DOI QR코드

DOI QR Code

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze (Department of Applied Mechanics and Engineering, Sun Yat-Sen University) ;
  • Liu, Yulan (Department of Applied Mechanics and Engineering, Sun Yat-Sen University) ;
  • Wang, Biao (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University)
  • Received : 2020.06.19
  • Accepted : 2020.09.28
  • Published : 2021.04.25

Abstract

In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China [11232015, 11572355].

References

  1. B.W. Qiu, J. Wang, Y.B. Deng, M.J. Wang, Y.W. Wu, S.Z. Qiu, A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding, Nucl. Eng. Technol. 52 (2020) 1-13. https://doi.org/10.1016/j.net.2019.07.030
  2. H.G. Kim, I.H. Kim, J.Y. Park, Y.H. Koo, Application of coating technology on zirconium-based alloy to decrease high-temperature oxidation, in: ASTM Special Technical Publication, 2015, pp. 346-369.
  3. J. Wang, H. Yeom, P. Humrickhouse, K. Sridharan, M. Corradini, Effectiveness of Cr-coated Zr-alloy clad in delaying fuel degradation for a PWR during a station blackout event, Nucl. Technol. 206 (2019) 467-477. https://doi.org/10.1080/00295450.2019.1649566
  4. Y. Lee, J.I. Lee, H.C. No, Mechanical analysis of surface-coated zircaloy cladding, Nucl. Eng. Technol. 49 (2017) 1031-1043. https://doi.org/10.1016/j.net.2017.03.012
  5. M. Wagih, B. Spencer, J. Hales, K. Shirvan, Fuel performance of chromiumcoated zirconium alloy and silicon carbide accident tolerant fuel claddings, Ann. Nucl. Energy 120 (2018) 304-318. https://doi.org/10.1016/j.anucene.2018.06.001
  6. J. Krejci, J. Kabatova, F. Manoch, J. Koci, L. Cvrcek, J. Malek, S. Krum, P. Sutta, P. Bublikova, P. Halodov a, H.K. Namburi, M. Sevecek, Development and testing of multicomponent fuel cladding with enhanced accidental performance, Nucl. Eng. Technol. 52 (2020) 597-609. https://doi.org/10.1016/j.net.2019.08.015
  7. T. Dabney, G. Johnson, H. Yeom, B. Maier, J. Walters, K. Sridharan, Experimental evaluation of cold spray FeCrAl alloys coated zirconium-alloy for potential accident tolerant fuel cladding, Nucl. Mater. Energy 21 (2019) 10.
  8. M. Kennas, H. Kim, J.G. Gigax, T. Wang, B.R. Maier, H. Yeom, G.O. Johnson, T. Dabney, K. Sridharan, K.L. Peddicord, L. Shao, Radiation response of FeCrAlcoated zircaloy-4, J. Nucl. Mater. 536 (2020) 152175. https://doi.org/10.1016/j.jnucmat.2020.152175
  9. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (2015) 531-539. https://doi.org/10.1016/j.jnucmat.2015.06.030
  10. K. Hong, J.R. Barber, M.D. Thouless, W. Lu, Cracking of Cr-coated accident-tolerant fuel during normal operation and under power-ramping conditions, Nucl. Eng. Des. 353 (2019) 110275. https://doi.org/10.1016/j.nucengdes.2019.110275
  11. D.C. Roache, A. Jarama, C.H. Bumgardner, F.M. Heim, J. Walters, J. Romero, B. Maier, X. Li, Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings by coupling digital image correlation and acoustic emission, Mater. Sci. Eng., A 774 (2020) 138850. https://doi.org/10.1016/j.msea.2019.138850
  12. K.A. Terrani, Accident tolerant fuel cladding development: Promise, status, and challenges, J. Nucl. Mater. 501 (2018) 13-30. https://doi.org/10.1016/j.jnucmat.2017.12.043
  13. Y. Lee, M.S. Kazimi, A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel, J. Nucl. Mater. 458 (2015) 87-105. https://doi.org/10.1016/j.jnucmat.2014.12.013
  14. D.R. Olander, Fundamental aspects of nuclear reactor fuel element, in: Department of Nuclear Engineering, California University, 1976. Berkeley, USA.
  15. L. China, Nuclear Power Engineering Co., Suzhou Nuclear Power Research Institute, Nuclear Power Plant Metal Materials Manual, China Electric Power Press, Beijing, 2017.
  16. G. Simmons, Single crystal elastic constants and calculated aggregate Progress, J. Grad. Res. Cent. 34 (1965) 273.
  17. A. Masolin, P.O. Bouchard, R. Martini, M. Bernacki, Thermo-mechanical and fracture properties in single-crystal silicon, J. Mater. Sci. 48 (2013) 979-988. https://doi.org/10.1007/s10853-012-6713-7
  18. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  19. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435. https://doi.org/10.1016/j.jnucmat.2013.06.041
  20. U. Holzwarth, H. Stamm, Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys, J. Nucl. Mater. 300 (2002) 161-177. https://doi.org/10.1016/S0022-3115(01)00745-0
  21. K.E. Petersen, Silicon as a mechanical material, Proc. IEEE 70 (1982) 420-457. https://doi.org/10.1109/PROC.1982.12331
  22. B.Q. Yang, K. Zhang, G.N. Chen, G.X. Luo, J.H. Xiao, Measurement of fracture toughness and interfacial shear strength of hard and brittle Cr coating on ductile steel substrate, Surf. Eng. 24 (2008) 332-336. https://doi.org/10.1179/174329408X282587
  23. F. Ebrahimi, L. Kalwani, Fracture anisotropy in silicon single crystal, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 268 (1999) 116-126. https://doi.org/10.1016/S0921-5093(99)00077-5
  24. S. Nogami, A. Hasegawa, L.L. Snead, Indentation fracture toughness of neutron irradiated silicon carbide, J. Nucl. Mater. 307 (2002) 1163-1167. https://doi.org/10.1016/S0022-3115(02)01055-3
  25. K.H. Park, S. Kondo, Y. Katoh, A. Kohyama, Mechanical properties of beta-SiC after Si- and dual Si plus He-ion irradiation at various temperatures, Fusion Sci. Technol. 44 (2003) 455-459. https://doi.org/10.13182/FST03-A377
  26. M.N. Gussev, K.G. Field, Y. Yamamoto, Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys, Mater. Des. 129 (2017) 227-238. https://doi.org/10.1016/j.matdes.2017.05.009
  27. R.L. Williamson, Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior, J. Nucl. Mater. 415 (2011) 74-83. https://doi.org/10.1016/j.jnucmat.2011.05.044
  28. G.R. Irwin, R. de Wit, A summary of fracture mechanics concepts, J. Test. Eval. 11 (1983) 56-65. https://doi.org/10.1520/JTE11586J
  29. H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis of Cracks Handbook, 3 ed., American Society of Mechanical Engineers, United States, 2000.
  30. J.L. Beuth Jr., Cracking of thin bonded films in residual tension, Int. J. Solid Struct. 29 (1992) 1657-1675. https://doi.org/10.1016/0020-7683(92)90015-L
  31. D.B. Bogy, Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, J. Appl. Mech. 35 (1968) 460-466. https://doi.org/10.1115/1.3601236
  32. J. Dundurs, Discussion on "Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, J. Appl. Mech. 36 (1969) 650-652. https://doi.org/10.1115/1.3564739
  33. V.A. Avincola, P. Guenoun, K. Shirvan, Mechanical performance of SiC three-layer cladding in PWRs, Nucl. Eng. Des. 310 (2016) 280-294. https://doi.org/10.1016/j.nucengdes.2016.10.008

Cited by

  1. Review on chromium coated zirconium alloy accident tolerant fuel cladding vol.895, pp.p1, 2021, https://doi.org/10.1016/j.jallcom.2021.162450