DOI QR코드

DOI QR Code

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa) ;
  • Espinosa-Paredes, G. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa) ;
  • Vazquez-Rodriguez, A. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa) ;
  • Romero-Paredes, H. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa)
  • Received : 2020.03.04
  • Accepted : 2020.12.13
  • Published : 2021.06.25

Abstract

The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.

Keywords

Acknowledgement

The authors acknowledge the financial support received from the Mexican Secretariat of Public Education SEP, under the project 12513383, entitled; Energy Optimization of the Hydrogen Production Process with New Generation of Nuclear Reactors, by which it was possible to develop this research work. The authors are very grateful for the comments and discussions of the Reviewers.

References

  1. R.S. El-Emam, H. Ozcan, I. Dincer, Comparative cost evaluation of nuclear hydrogen production methods with the Hydrogen Economy Evaluation Program (HEEP), Int. J. Hydrogen Energy 40 (34) (2015) 11168-11177. https://doi.org/10.1016/j.ijhydene.2014.12.098
  2. M. Al-Zareer, I. Dincer, M.A. Rosen, Development and assessment of a novel integrated nuclear plant for electricity and hydrogen production, Energy Convers. Manag. 134 (2017) 221-234. https://doi.org/10.1016/j.enconman.2016.12.004
  3. R. Elder, R. Allen, Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant, Prog. Nucl. Energy 51 (3) (2009) 500-525. https://doi.org/10.1016/j.pnucene.2008.11.001
  4. R.S. El-Emam, I. Khamis, Advances in nuclear hydrogen production: results from an IAEA international collaborative research project, Int. J. Hydrogen Energy 44 (35) (2019) 19080-19088. https://doi.org/10.1016/j.ijhydene.2018.04.012
  5. M.F. Orhan, H. Kahraman, B.S. Babu, Approaches for integrated hydrogen production based on nuclear and renewable energy sources: energy and exergy assessments of nuclear and solar energy sources in the United Arab Emirates, Int. J. Hydrogen Energy 42 (4) (2017) 2601-2616. https://doi.org/10.1016/j.ijhydene.2016.05.044
  6. G.E. Beghi, A decade of research on thermochemical hydrogen at the Joint Research Centre, ISPRA, Int. J. Hydrogen Energy 11 (12) (1986) 761-771. https://doi.org/10.1016/0360-3199(86)90172-2
  7. G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis, Z. Wang, V. Daggupati, K. Gabriel, I. Dincer, M.A. Rosen, P. Spekkens, S.N. Lvov, M. Fowler, P. Tremaine, J. Mostaghimi, E.B. Easton, L. Trevani, G. Rizvi, B.M. Ikeda, M.H. Kaye, L. Lu, I. Pioro, W.R. Smith, E. Secnik, J. Jiang, J. Avsec, Canada's program on nuclear hydrogen production and the thermochemical Cu-Cl cycle, Int. J. Hydrogen Energy 35 (20) (2010) 10905-10926. https://doi.org/10.1016/j.ijhydene.2010.07.087
  8. Z. Ping, W. Laijun, C. Songzhe, X. Jingming, Progress of nuclear hydrogen production through the iodineesulfur process in China, Renew. Sustain. Energy Rev. 81 (2) (2018) 1802-1812. https://doi.org/10.1016/j.rser.2017.05.275
  9. C. Cany, C. Mansilla, P. da Costa, G. Mathonniere, Adapting the French nuclear fleet to integrate variable renewable energies via the production of hydrogen: towards massive production of low carbon hydrogen? Int. J. Hydrogen Energy 42 (19) (2017) 13339-13356. https://doi.org/10.1016/j.ijhydene.2017.01.146
  10. M. Jaszczur, M.A. Rosen, T. Sliwa, M. Dudek, L. Pienkowski, Hydrogen production using high temperature nuclear reactors: efficiency analysis of a combined cycle, Int. J. Hydrogen Energy 41 (19) (2016) 7861-7871. https://doi.org/10.1016/j.ijhydene.2015.11.190
  11. R.Z. Aminov, A.N. Bairamov, Performance evaluation of hydrogen production based on off-peak electric energy of the nuclear power plant, Int. J. Hydrogen Energy 42 (34) (2017) 21617-21625. https://doi.org/10.1016/j.ijhydene.2017.07.132
  12. S. Kubo, N. Tanaka, J. Iwatsuki, S. Kasahara, Y. Imai, H. Noguchi, K. Onuki, R&D status on thermochemical IS process for hydrogen production at JAEA, Energy Procedia 29 (2012) 308-317. https://doi.org/10.1016/j.egypro.2012.09.037
  13. J.E. O'Brien, M.G. McKellar, E.A. Harvego, C.M. Stoots, High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy - summary of system simulation and economic analyses, Int. J. Hydrogen Energy 35 (10) (2010) 4808-4819. https://doi.org/10.1016/j.ijhydene.2009.09.009
  14. A. Odukoya, G.F. Naterer, M. Roeb, C. Mansilla, J. Mougin, B. Yu, J. Kupecki, I. Iordache, J. Milewski, Progress of the IAHE Nuclear Hydrogen Division on international hydrogen production programs, Int. J. Hydrogen Energy 41 (19) (2016) 7878-7891. https://doi.org/10.1016/j.ijhydene.2015.09.126
  15. X.L. Yang, R. Hino, Nuclear Hydrogen Production Handbook, Taylor and Francis Group, LLC, 2011.
  16. International Atomic Energy Agency, Hydrogen Production Using Nuclear Energy, IAEA Nuclear Energy Series, 2013. No.NP-T-4.2.
  17. S. Deokattey, K. Bhanumurthy, P.K. Vijayan, I.V. Dulera, Hydrogen production using high temperature reactors: an overview, Adv. Energy Res. 1 (1) (2013) 13-33. https://doi.org/10.12989/eri.2013.1.1.013
  18. G. Besenbruch, General Atomic sulfur-iodine thermochemical water-splitting process, American Chemical Society, Division of Petroleum Chemistry, Preprints 27 (1) (1982) 48-53.
  19. X.L. Yan, H. Sato, J. Sumita, Y. Nomoto, S. Horii, Y. Imai, S. Kasahara, K. Suzuki, J. Iwatsuki, A. Terada, Y. Tachibana, M. Oono, S. Yamada, K. Suyama, Design of HTTR-GT/H2 test plant, Nucl. Eng. Des. 329 (2018) 223-233. https://doi.org/10.1016/j.nucengdes.2017.10.009
  20. K. Takamatsu, S. Nakagawa, T. Takeda, Core dynamics analysis for reactivity insertion and loss of coolant flow tests using the high temperature engineering test reactor, J. Power Energy Syst. 2 (2) (2008) 790-803. https://doi.org/10.1299/jpes.2.790
  21. H. Romero-Paredes, A. Vazquez Rodriguez, G. Espinosa Paredes, H.I. Villafan Vidales, J.J. Ambriz Garcia, A. Nunez-Carrera, Exergy and separately anergy analysis of a thermochemical nuclear cycle for hydrogen production, Appl. Therm. Eng. 75 (2015) 1311-1320. https://doi.org/10.1016/j.applthermaleng.2014.06.001
  22. K. Onuki, S. Kubo, A. Terada, N. Sakaba, R. Hino, Thermochemical water-splitting cycle using iodine and sulfur, Energy Environ. Sci. 2 (5) (2009) 491-497. https://doi.org/10.1039/b821113m
  23. H.C. No, J.H. Kim, H.M. Kim, A review of helium gas turbine technology for high-temperature gas-cooled reactors, Nucl. Eng. and Technol. 39 (1) (2007) 21-30. https://doi.org/10.5516/NET.2007.39.1.021
  24. HSC, Chemistry 5 software. http://www.chemistry-software.com/general/13094.htm, 2020.
  25. D.F. Rudd, G.J. Powers, J.J. Siirola, Proc. Synthesis, Prentice-Hall, Englewood Cliffs, N.J., 1973.
  26. G.F. Naterer, I. Dincer, C. Zamfirescu, Hydrogen Production from Nuclear Energy, Springer-Verlag London, 2013.

Cited by

  1. Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market vol.14, pp.24, 2021, https://doi.org/10.3390/en14248289