Acknowledgement
This research has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE Project under Grant Agreement No. 754329.
References
- M. Bertolus, INSPYRE: investigations supporting MOX fuel licensing in ESNII prototype reactors [Online]. Available, http://www.eera-jpnm.eu/inspyre/, 2017.
- P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politec. di Milano, Italy, 2011. January.
- H. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242. https://doi.org/10.1080/00337578008207118
- M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
- D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109. https://doi.org/10.1016/j.jnucmat.2006.03.010
- M. Tonks, et al., Unit mechanisms of fission gas release: current understanding and future needs, J. Nucl. Mater. 504 (2018) 300-317. https://doi.org/10.1016/j.jnucmat.2018.03.016
- J. Rest, et al., Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
- R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77. https://doi.org/10.1016/j.jnucmat.2003.10.008
- T. Barani, et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017).
- D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020).
- D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code, Online Repos.. [Online]. Available, https://gitlab.com/poliminrg/sciantix. Accessed: 04-Oct-2019.
- P. Sung, Equilibrium Solubility and Diffusivity of Helium in Single-Crystal Uranium Dioxide, University of Washington, 1967. PhD Thesis.
- K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J. Nucl. Mater. 419 (1-3) (2011) 272-280. https://doi.org/10.1016/j.jnucmat.2011.08.045
- G. Martin, et al., A NRA study of temperature and heavy ion irradiation effects on helium migration in sintered uranium dioxide, J. Nucl. Mater. 357 (1-3) (2006) 198-205. https://doi.org/10.1016/j.jnucmat.2006.06.021
- Z. Talip, et al., Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (1-3) (2014) 117-127. https://doi.org/10.1016/j.jnucmat.2013.10.066
- L. Luzzi, et al., Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018).
- E. Maugeri, et al., Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2) (2009) 461-466. https://doi.org/10.1016/j.jnucmat.2008.12.033
- L. Cognini, et al., "Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (April) (2018) 240-244. https://doi.org/10.1016/j.nucengdes.2018.09.024
- E. Yakub, et al., Diffusion of helium in non-stoichiometric uranium dioxide, J. Nucl. Mater. 400 (2010) 189-195. https://doi.org/10.1016/j.jnucmat.2010.03.002
- K. Govers, et al., Molecular dynamics simulation of helium and oxygen diffusion in UO2±x, J. Nucl. Mater. 395 (2009) 131-139. https://doi.org/10.1016/j.jnucmat.2009.10.043
- Y. Yun, et al., Theory of He trapping, diffusion, and clustering in UO2, J. Nucl. Mater. 385 (2009) 510-516. https://doi.org/10.1016/j.jnucmat.2008.12.311
- X.-Y. Liu, et al., Revisiting the diffusion mechanism of helium in UO2: a DFT+U study, J. Nucl. Mater. 498 (2018) 373-377. https://doi.org/10.1016/j.jnucmat.2017.10.066
- E. Yakub, et al., Helium solubility in uranium dioxide from molecular dynamics simulations, J. Nucl. Mater. 414 (2011) 83-87. https://doi.org/10.1016/j.jnucmat.2010.12.025
- L. Noirot, A method to calculate equilibrium concentrations of gas and defects in the vicinity of an over-pressured bubble in UO2, J. Nucl. Mater. 447 (2014) 166-178. https://doi.org/10.1016/j.jnucmat.2014.01.011
- reportState-of-the-Art Report on Multi-Scale Modelling of Nuclear Fuels", Nuclear Science, NEA/NSC/R(2015)vol. 5, 2015.
- K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
- E. Federici, A. Courcelle, P. Blanpain, H. Cognon, Helium production and behavior in nuclear oxide fuels during irradiation in LWR, in: Proceedings of the 2007 International LWR Fuel Performance Meeting, San Francisco, California, 2007, pp. 664-673.
- M.V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and Re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (2) (1969) 180-185. https://doi.org/10.13182/NSE69-A20676
- D. Pizzocri, et al., A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018).
- P. Losonen, On the behaviour of intragranular fission gas in UO2 fuel, J. Nucl. Mater. 280 (1) (2000) 56-72. https://doi.org/10.1016/S0022-3115(00)00028-3
- F. Rufeh, et al., The solubility of helium in uranium dioxide, Nucl. Sci. Eng. 23 (1965) 335-338. https://doi.org/10.13182/NSE65-A21069
- P. van Uffelen, G. Pastore, V. di Marcello, L. Luzzi, Multiscale modelling for the fission gas behaviour in the TRANSURANUS Code, Nucl. Eng. Technol. 43 (6) (2011) 477-488. https://doi.org/10.5516/NET.2011.43.6.477
- A.M. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, 1957.
- C.O.T. Galvin, Pipe and grain boundary diffusion of He in UO2, J. Phys. Condens. Matter 28 (2016).
- L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molucelar dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
- F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (4) (1958) 335-351. https://doi.org/10.1016/0022-3697(58)90053-2
- K. Lassmann, C. O'Carroll, J. van de Laar, C.T. Walker, The radial distribution of plutonium in high burnup UO2 fuels, J. Nucl. Mater. 208 (3) (Feb. 1994) 223-231. https://doi.org/10.1016/0022-3115(94)90331-X
- D. Pizzocri, T. Barani, L. Luzzi, Coupling of TRANSURANUS with the SCIANTIX fission gas behaviour module, in: International Workshop "Towards Nuclear Fuel Modelling in the Various Reactor Types across Europe,", 2019.
- J.-Y. Colle, et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J. Nucl. Sci. Technol. 51 (5) (2014) 700-711. https://doi.org/10.1080/00223131.2014.889583
- P. Van Uffelen, et al., An experimental study of grain growth in mixed oxide samples with various microstructures and plutonium concentrations, J. Nucl. Mater. 434 (1-3) (2013) 287-290. https://doi.org/10.1016/j.jnucmat.2012.11.053
- K. Lassmann, A. Schubert, P. Van Uffelen, C. Gyori, J. Van De Laar, TRANSURANUS Handbook, Karlsruhe, Germany, 2014.
- D. Pizzocri, et al., Review of Available Models and Progress on the Sub-models Dealing with the Intra- and Intergranular Inert Gas Behaviour, 2019.
- C. Ronchi, J.P. Hiernaut, Helium diffusion in uranium and plutonium oxides, J. Nucl. Mater. 325 (2004) 1-12. https://doi.org/10.1016/j.jnucmat.2003.10.006
- J.P. Hiernaut, et al., Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324. https://doi.org/10.1016/j.jnucmat.2008.03.006