DOI QR코드

DOI QR Code

Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes

  • Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Cechet, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Barani, T. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Van Uffelen, P. (European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2020.04.07
  • Accepted : 2020.07.09
  • Published : 2021.02.25

Abstract

In this work, we propose a new mechanistic model for the treatment of helium behaviour which includes the description of helium solubility in oxide fuel. The proposed model has been implemented in SCIANTIX and validated against annealing helium release experiments performed on small doped fuel samples. The overall agreement of the new model with the experimental data is satisfactory, and given the mechanistic formulation of the proposed model, it can be continuously and easily improved by directly including additional phenomena as related experimental data become available.

Keywords

Acknowledgement

This research has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE Project under Grant Agreement No. 754329.

References

  1. M. Bertolus, INSPYRE: investigations supporting MOX fuel licensing in ESNII prototype reactors [Online]. Available, http://www.eera-jpnm.eu/inspyre/, 2017.
  2. P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politec. di Milano, Italy, 2011. January.
  3. H. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242. https://doi.org/10.1080/00337578008207118
  4. M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
  5. D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109. https://doi.org/10.1016/j.jnucmat.2006.03.010
  6. M. Tonks, et al., Unit mechanisms of fission gas release: current understanding and future needs, J. Nucl. Mater. 504 (2018) 300-317. https://doi.org/10.1016/j.jnucmat.2018.03.016
  7. J. Rest, et al., Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
  8. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77. https://doi.org/10.1016/j.jnucmat.2003.10.008
  9. T. Barani, et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017).
  10. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020).
  11. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code, Online Repos.. [Online]. Available, https://gitlab.com/poliminrg/sciantix. Accessed: 04-Oct-2019.
  12. P. Sung, Equilibrium Solubility and Diffusivity of Helium in Single-Crystal Uranium Dioxide, University of Washington, 1967. PhD Thesis.
  13. K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J. Nucl. Mater. 419 (1-3) (2011) 272-280. https://doi.org/10.1016/j.jnucmat.2011.08.045
  14. G. Martin, et al., A NRA study of temperature and heavy ion irradiation effects on helium migration in sintered uranium dioxide, J. Nucl. Mater. 357 (1-3) (2006) 198-205. https://doi.org/10.1016/j.jnucmat.2006.06.021
  15. Z. Talip, et al., Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (1-3) (2014) 117-127. https://doi.org/10.1016/j.jnucmat.2013.10.066
  16. L. Luzzi, et al., Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018).
  17. E. Maugeri, et al., Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2) (2009) 461-466. https://doi.org/10.1016/j.jnucmat.2008.12.033
  18. L. Cognini, et al., "Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (April) (2018) 240-244. https://doi.org/10.1016/j.nucengdes.2018.09.024
  19. E. Yakub, et al., Diffusion of helium in non-stoichiometric uranium dioxide, J. Nucl. Mater. 400 (2010) 189-195. https://doi.org/10.1016/j.jnucmat.2010.03.002
  20. K. Govers, et al., Molecular dynamics simulation of helium and oxygen diffusion in UO2±x, J. Nucl. Mater. 395 (2009) 131-139. https://doi.org/10.1016/j.jnucmat.2009.10.043
  21. Y. Yun, et al., Theory of He trapping, diffusion, and clustering in UO2, J. Nucl. Mater. 385 (2009) 510-516. https://doi.org/10.1016/j.jnucmat.2008.12.311
  22. X.-Y. Liu, et al., Revisiting the diffusion mechanism of helium in UO2: a DFT+U study, J. Nucl. Mater. 498 (2018) 373-377. https://doi.org/10.1016/j.jnucmat.2017.10.066
  23. E. Yakub, et al., Helium solubility in uranium dioxide from molecular dynamics simulations, J. Nucl. Mater. 414 (2011) 83-87. https://doi.org/10.1016/j.jnucmat.2010.12.025
  24. L. Noirot, A method to calculate equilibrium concentrations of gas and defects in the vicinity of an over-pressured bubble in UO2, J. Nucl. Mater. 447 (2014) 166-178. https://doi.org/10.1016/j.jnucmat.2014.01.011
  25. reportState-of-the-Art Report on Multi-Scale Modelling of Nuclear Fuels", Nuclear Science, NEA/NSC/R(2015)vol. 5, 2015.
  26. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
  27. E. Federici, A. Courcelle, P. Blanpain, H. Cognon, Helium production and behavior in nuclear oxide fuels during irradiation in LWR, in: Proceedings of the 2007 International LWR Fuel Performance Meeting, San Francisco, California, 2007, pp. 664-673.
  28. M.V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and Re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (2) (1969) 180-185. https://doi.org/10.13182/NSE69-A20676
  29. D. Pizzocri, et al., A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018).
  30. P. Losonen, On the behaviour of intragranular fission gas in UO2 fuel, J. Nucl. Mater. 280 (1) (2000) 56-72. https://doi.org/10.1016/S0022-3115(00)00028-3
  31. F. Rufeh, et al., The solubility of helium in uranium dioxide, Nucl. Sci. Eng. 23 (1965) 335-338. https://doi.org/10.13182/NSE65-A21069
  32. P. van Uffelen, G. Pastore, V. di Marcello, L. Luzzi, Multiscale modelling for the fission gas behaviour in the TRANSURANUS Code, Nucl. Eng. Technol. 43 (6) (2011) 477-488. https://doi.org/10.5516/NET.2011.43.6.477
  33. A.M. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, 1957.
  34. C.O.T. Galvin, Pipe and grain boundary diffusion of He in UO2, J. Phys. Condens. Matter 28 (2016).
  35. L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molucelar dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
  36. F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (4) (1958) 335-351. https://doi.org/10.1016/0022-3697(58)90053-2
  37. K. Lassmann, C. O'Carroll, J. van de Laar, C.T. Walker, The radial distribution of plutonium in high burnup UO2 fuels, J. Nucl. Mater. 208 (3) (Feb. 1994) 223-231. https://doi.org/10.1016/0022-3115(94)90331-X
  38. D. Pizzocri, T. Barani, L. Luzzi, Coupling of TRANSURANUS with the SCIANTIX fission gas behaviour module, in: International Workshop "Towards Nuclear Fuel Modelling in the Various Reactor Types across Europe,", 2019.
  39. J.-Y. Colle, et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J. Nucl. Sci. Technol. 51 (5) (2014) 700-711. https://doi.org/10.1080/00223131.2014.889583
  40. P. Van Uffelen, et al., An experimental study of grain growth in mixed oxide samples with various microstructures and plutonium concentrations, J. Nucl. Mater. 434 (1-3) (2013) 287-290. https://doi.org/10.1016/j.jnucmat.2012.11.053
  41. K. Lassmann, A. Schubert, P. Van Uffelen, C. Gyori, J. Van De Laar, TRANSURANUS Handbook, Karlsruhe, Germany, 2014.
  42. D. Pizzocri, et al., Review of Available Models and Progress on the Sub-models Dealing with the Intra- and Intergranular Inert Gas Behaviour, 2019.
  43. C. Ronchi, J.P. Hiernaut, Helium diffusion in uranium and plutonium oxides, J. Nucl. Mater. 325 (2004) 1-12. https://doi.org/10.1016/j.jnucmat.2003.10.006
  44. J.P. Hiernaut, et al., Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324. https://doi.org/10.1016/j.jnucmat.2008.03.006