과제정보
This work was supported by Korea Hydro & Nuclear Power Co., Ltd. (No. 2018-TECH-08). This work was also supported by National Research Foundation of Korea (NRF) funded by the Korean government (MSIT: Ministry of Science and ICT) (2017M2A8A4015283).
참고문헌
- M. Andreani, G. Yadigaroglu, Dispersed Flow Film Boiling: an Investigation of the Possibility to Improve the Models Implemented in the NRC Computer Codes for the Reflooding Phase of the LOCA, 1992, U.S. Nuclear Regulatory Commission, NUREG/IA-0042.
- D.L. Aumiller, G.W. Swartele, M.J. Meholic, L.J. Lloyd, F.X. Buschman Bettis, COBRA-IE: A NEW SUB-CHANNEL ANALYSIS CODE, International Topical Meeting on Nuclear Reactor Thermal Hydraulics, IL, Chicago, 2015. August 30-September 4.
- J.G. Leidenfrost, A tract about some qualities of common water, Int. J. Heat Mass Tran. 9 (1966) 1153-1166. https://doi.org/10.1016/0017-9310(66)90111-6
- R.P. Forslund, W.M. Rohsenow, Dispersed flow film boiling, J. Heat transfer 90 (1968) 399-407. https://doi.org/10.1115/1.3597531
- S.M. Bajorek, M.Y. Young, Direct contact heat transfer model for dispersedflow film boiling, Nucl. Tech. 132 (2000) 375-388. https://doi.org/10.13182/NT00-A3151
- Y. Guo, K. Mishima, A non-equilibrium mechanistic heat transfer model for post dryout dispersed flow regime, Exp. Therm. Fluid Sci. 23 (2002) 569-861.
- F. Lelong, M. Gradeck, N. Seiler, P. Ruyer, G. Castanet, P. Dunand, Behavior of Liquid Droplets Bouncing onto a Hot Slab, Annual conference on Liquid Atomization and Spray systems, Brno, Czech Republic, 2010. September 6-8.
- G.E. Kendall, W.M. Rohsenow, Heat Transfer to Impacting Drops and Post Critical Heat Flux Dispersed Flow, Department of mechanical engineering, Massachusetts Institute of Technology, 1978. Technical report No.85694-100.
- J. Senda, K. Yamada, The heat transfer characteristics of a small droplet impinging upon a hot surface, International Journal of the Japan Society of Mechanical Engineers 31 (1988) 105-111.
- T. Ueda, T. Enomoto, M. Kanetsuki, Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface, Bull. Jpn. Soc. Mech. Eng. 22 (1979) 724-732. https://doi.org/10.1299/jsme1958.22.724
- Z. Wang, W. Qu, J. Xiong, M. Zhong, Y. Yang, Investigation on effect of surface properties on droplet impact cooling of cladding surfaces, Nucl. Eng. Tech. 52 (2020) 508-519. https://doi.org/10.1016/j.net.2019.08.022
- D. Chatzikyriakou, S.P. Walker, C.P. Hale, G.F. Hewitt, The measurement of heat transfer from hot surfaces to nonwetting droplets 54 (2011) 1432-1440.
- J. Jung, S. Jeong, H. Kim, Investigation of single-droplet/wall collision heat transfer characteristics using infrared thermometry, Int. J. Heat Mass Tran. 92 (2016) 774-783. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.050
- J. Park, H. Kim, Effects of droplet temperature on heat transfer during collision on a heated wall above the Leidenfrost temperature, J. ILASS-Korea 21 (2016) 78-87. https://doi.org/10.15435/JILASSKR.2016.21.2.78
- S. Inada, Y. Miyasaka, K. Nishida, Transient heat transfer for water drop impinging on a heated surface, Bull. Jpn. Soc. Mech. Eng. 28 (1985) 2675-2681. https://doi.org/10.1299/jsme1958.28.2675
- Ge Yang, L.-S. Fan, 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling, Int. J. Heat Mass Tran. 49 (2006) 4231-4249. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.023
- A.V. Gulikov, I.I. Berlin, A.V. Karpyshev, S.V. Losev, The effect of liquid subcooling on the collision of a solitary droplet with a heated wall, High Temp. 38 (2000) 161-164. https://doi.org/10.1007/BF02755586
- M.J. Thurgood, J.M. Kelly, T.E. Guidotti, R.J. Kohrt, K.R. Crowell, COBRA/TRAC-A Thermal-Hydraulics Code for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Systems, U.S. Nuclear Regulatory Commission, 1983. NUREG/CR-3046.
- S.J. Ha, C.E. Park, K.D. Kim, C.H. Ban, Development of the SPACE code for nuclear power plant, Nucl. Eng. Tech. 43 (2011) 45-62. https://doi.org/10.5516/NET.2011.43.1.045
- K.J. Baumeister, T.D. Hamill, G.J. Schoessow, A Generalized Correlation of Vaporization Times of Drops in Film Boiling on a Flat Plate, National Aeronautics and SPACE Administration, 1966. NASA TM X-52177.
- L. Bolle, J.C. Moureau, Spray cooling of hot surface, Multiphas. Sci. Technol. 1 (1982) 76-90.
- A.L. Biance, F. Chevy, C. Clanet, G. Lagudeau, D. Quere, On the elasticity of an inertial liquid shock, J. Fluid Mech. 554 (2006) 47-66. https://doi.org/10.1017/S0022112006009189
- L. Rayleigh, On the capillary phenomena of jets, Proc. Roy. Soc. Lond. 29 (1879) 71-97. https://doi.org/10.1098/rspl.1879.0015
- J. Park, H. Kim, An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature, Kerntechnik 81 (2016) 1-11. https://doi.org/10.3139/124.016012
- E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Materials, Manufacturing, Applications, first ed., Springer US, 2009.
- P.K. Meduri, G.R. Warrier, V.K. Dhir, Wall heat flux partitioning during subcooled forced flow film boiling of water on a vertical surface, Int. J. Heat Mass Tran. 52 (2009) 3534-3546. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.040
- C.O. Pedersen, An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface, Int. J. Heat Mass Tran. 13 (1970) 369-372. https://doi.org/10.1016/0017-9310(70)90113-4
- T. Tran, H.J.J. Staat, A. Susarrey-arce, T. Foertsch, A. Houselt, H.J.G.E. Gardeniers, A. Prosperetti, D. Lohse, C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter 9 (2013) 3272-3282. https://doi.org/10.1039/c3sm27643k
- H. Fujimoto, N. Hatta, K. Kinoshita, O. Takahashi, H. Takuda, Collision Dynamics of a Water Droplet Impinging on a Rigid Surface above the Leidenfrost Temperature, vol. 35, Iron and Steel Institute of Japan, 1995, pp. 50-55.
- A. Frohn, A. Karl, Experimental investigation of interaction processes between droplets and hot walls, Phys. Fluids 12 (2000) 785-796. https://doi.org/10.1063/1.870335
- T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (2012), 36101. https://doi.org/10.1103/PhysRevLett.108.036101
- K.S. Hamdan, D.E. Kim, S.K. Moon, Droplets behavior impacting on a hot surface above the Leidenforst temperature, Ann. Nucl. Energy 80 (2015) 338-347. https://doi.org/10.1016/j.anucene.2015.02.021
- J. Park, H. Kim, S. Bae, K. Kim, The effect of impact velocity on droplet-wall collision heat transfer above the Leidenfrost point temperature, Trans. Korean Society of Mech. Eng. B 39 (2015) 567-578.
- J. Park, D.E. Kim, Dynamics of liquid drops levitating on superheated surfaces, Int. J. Therm. Sci. 152 (2020), 106321. https://doi.org/10.1016/j.ijthermalsci.2020.106321