Acknowledgement
This work has been carried out under the Nuclear R&D Program supported by the Ministry of Science and ICT. (NRF-2017M2A8A5015064).
References
- H. Rosinger, P. Bera, W. Clendening, Steady-state creep of Zircaloy-4 fuel cladding from 940 to 1873 K, J. Nucl. Mater. 82 (2) (1979) 286-297. https://doi.org/10.1016/0022-3115(79)90011-4
- A. Donaldson, R. Horwood, T. Healey, Biaxial Creep Deformation of Zircaloy-4 in the High Alpha Phase Temperature Range, 1983.
- D. Kaddour, S. Frechinet, A.-F. Gourgues, J.-C. Brachet, L. Portier, A. Pineau, Experimental determination of creep properties of zirconium alloys together with phase transformation, Scripta Mater. 51 (6) (2004) 515-519. https://doi.org/10.1016/j.scriptamat.2004.05.046
- C. Lemaignan, 2.07-Zirconium Alloys: Properties and Characteristics, Comprehensive Nuclear Materials, Elsevier Oxford2012, pp. 217-232.
- C. Allison, G. Berna, R. Chambers, E. Coryell, K. Davis, D. Hagrman, D. Hagrman, N. Hampton, J. Hohorst, R. Mason, SCDAP/RELAP5/MOD3. 1 Code Manual, Volume IV: MATPRO-A Library of Materials Properties for Light-Water-Reactor Accident Analysis, DT Hagrman, NUREG/CR-6150, 1993, pp. 4-234. EGG-2720 4.
- C. Hunt, Anisotopic Theory and the Measurement and Use of the Anisotropic Factors for Zircaloy-4 Fuel Sheaths, 1975.
- H. Rosinger, J. Bowden, R. Shewfelt, The Anisotropic Creep Behaviour of Zircaloy-4 Fuel Cladding at 1073 K, Atomic Energy of Canada Ltd., 1982.
- H.-J. Neitzel, H. Rossinger, The Development of a Burst Criterion for Zircaloy Fuel Cladding under LOCA Conditions, Atomic Energy of Canada Ltd., 1980.
- A. Committee, Standard Specification for Wrought Zirconium Alloy Seamless Tubes for Nuclear Reactor Fuel Cladding, ASTM international, 2013. ASTM B 811-2013.
- A.K. Yadav, C.H. Shin, S.U. Lee, H.C. Kim, Experimental and numerical investigation on thermo-mechanical behavior of fuel rod under simulated LOCA conditions, Nucl. Eng. Des. 337 (2018) 51-65. https://doi.org/10.1016/j.nucengdes.2018.06.023
- A.K. Yadav, C.-H. Shin, C. Lee, S.-U. Lee, H.C. Kim, Numerical modeling of fuel rod transient response under out of pile test conditions, Prog. Nucl. Energy 113 (2019) 62-73. https://doi.org/10.1016/j.pnucene.2019.01.014
- S. Suman, Burst criterion for Indian PHWR fuel cladding under simulated lossof-coolant accident, Nucl. Eng. Technol. 51 (6) (2019) 1525-1531. https://doi.org/10.1016/j.net.2019.04.004
- M.K. Khan, M. Pathak, A.K. Deo, R. Singh, Burst criterion for zircaloy-4 fuel cladding in an inert environment, Nucl. Eng. Des. 265 (2013) 886-894. https://doi.org/10.1016/j.nucengdes.2013.08.071
- M. MATLAB, MATLAB 2019a, The MathWorks: Natick, MA, USA, 2019.
- G.-H. Choi, D.-H. Kim, C.-H. Shin, J.Y. Kim, B.J. Kim, In-situ deformation measurement of Zircaloy-4 cladding tube under various transient heating conditions using optical image analysis, Nucl. Eng. Des. 370 (2020), 110859. https://doi.org/10.1016/j.nucengdes.2020.110859
- R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. Lond. Math. Phys. Sci. 193 (1033) (1948) 281-297.
- K. Pettersson, Nuclear Fuel Behaviour in Loss-Of-Coolant (LOCA) Conditions, Issy-Les-Moulineaux, OECD Nuclear Energy Agency, France, 2009.
- H. Rosinger, A model to predict the failure of Zircaloy-4 fuel sheathing during postulated LOCA conditions, J. Nucl. Mater. 120 (1) (1984) 41-54. https://doi.org/10.1016/0022-3115(84)90169-7
- K. Geelhood, W. Luscher, J. Cuta, I. Porter, PNNL-19400, FRAPTRAN-2.0: a Computer Code for the Transient Analysis of Oxide Fuel Rods, 1 Rev2, Pacific Northwest National Laboratory, 2016.
- D. Powers, R. Meyer, Cladding Swelling and Rupture Models for LOCA Analysis, NUREG-0630, S, Nuclear Regulatory Commission, 1980.
- H. Chung, T. Kassner, Deformation Characteristics of Zircaloy Cladding in Vacuum and Steam under Transient-Heating Conditions: Summary Report, Argonne National Lab., 1978.
- D. Campello, N. Tardif, M. Moula, M.-C. Baietto, M. Coret, J. Desquines, Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach, Int. J. Solid Struct. 115 (2017) 190-199. https://doi.org/10.1016/j.ijsolstr.2017.03.016