DOI QR코드

DOI QR Code

The evolution of radiation-induced point defects near symmetrical tilt Σ5 (310) <001> grain boundary in pure δ-plutonium: A molecular dynamics study

  • Wang, Yangzhong (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Wenbo (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhang, Jiahui (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yun, Di (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Chen, Piheng (Institute of Materials, China Academy of Engineering Physics)
  • Received : 2020.03.05
  • Accepted : 2020.11.01
  • Published : 2021.05.25

Abstract

The effects of the symmetrical tilt Σ5 (310) <001> grain boundary (GB) on the evolution of radiation-induced point defects in pure δ-plutonium (Pu) were studied by Molecular dynamics (MD) simulations. The evolution of radiation-induced point defects was obtained when primary knock-on atom (PKA) was respectively set as -15 Å and 15 Å far from the GB and the number of residual defects was obtained as the distance from PKA to GB was changed. According to the results, compared with vacancies, interstitial atoms were more easily absorbed by GB. In addition, the formation energy of point defects was also calculated. The results showed that there was almost no difference for the formation energy of vacancies in the all matrix. However, the formation energy of interstitial atoms close to the GB was lower than that in the other bulk regions.

Keywords

Acknowledgement

Financial support provided by the NSAF Joint Fund (No. U1830124), National Natural Science Foundation of China (No. 11705137, 11675126) and China Postdoctoral Science Foundation (No. 2019M663738) is acknowledged.

References

  1. G.S. Chang, J. Alloys Compd. 444-445 (2007) 434-437. https://doi.org/10.1016/j.jallcom.2007.02.158
  2. F.C. Wu, P. Wang, X.Y. Liu, H.A. Wu, J. Nucl. Mater. 484 (2017) 7-15. https://doi.org/10.1016/j.jnucmat.2016.11.018
  3. L. Berlu, G. Jomard, G. Rosa, P. Faure, J. Nucl. Mater. 374 (2008) 344-353. https://doi.org/10.1016/j.jnucmat.2007.09.012
  4. M. Robinson, S.D. Kenny, R. Smith, M. Storr, J. Nucl. Mater. 423 (2012) 16-21. https://doi.org/10.1016/j.jnucmat.2011.11.046
  5. V.V. Dremov, A.V. Karavaev, S.I. Samarin, F.A. Sapozhnikov, M.A. Zocher, D.L. Preston, J. Nucl. Mater. 385 (2009) 79-82. https://doi.org/10.1016/j.jnucmat.2008.10.037
  6. S.M. Valone, M.I. Baskes, R.L. Martin, Phys. Rev. B 73 (2006) 214209. https://doi.org/10.1103/PhysRevB.73.214209
  7. B.Y. Ao, P.H. Chen, P. Shi, X.L. Wang, W.Y. Hu, L. Wang, Commun. Comput. Phys. 11 (2012) 1205-1225. https://doi.org/10.4208/cicp.290610.210111s
  8. M.I. Baskes, A.C. Lawson, S.M. Valone, Phys. Rev. B 72 (2005), 014129. https://doi.org/10.1103/PhysRevB.72.014129
  9. V.V. Dremov, A.V. Karavaev, F.A. Sapozhnikov, M.A. Vorobyova, D.L. Preston, M.A. Zocher, J. Nucl. Mater. 414 (2011) 471-478. https://doi.org/10.1016/j.jnucmat.2011.05.038
  10. B.Y. Ao, X.L. Wang, P.H. Chen, P. Shi, W.Y. Hu, J.Y. Yang, Acta Phys. Sin. 59 (2010) 422-429. https://doi.org/10.7498/aps.59.422
  11. M. Robinson, S.D. Kenny, R. Smith, M.T. Storr, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (2011) 2539-2548. https://doi.org/10.1016/j.nimb.2011.07.005
  12. B.Y. Ao, X.L. Wang, W.Y. Hu, J.Y. Yang, J.X. Xia, J. Alloys Compd. 444-445 (2007) 300-304. https://doi.org/10.1016/j.jallcom.2006.11.077
  13. M. Robinson, S.D. Kenny, R. Smith, M.T. Storr, E. McGee, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 2967-2970. https://doi.org/10.1016/j.nimb.2009.06.113
  14. M.I. Baskes, S.Y. Hu, S.M. Valone, G.F. Wang, A.C. Lawson, J. Comput. Aided Mater. Des. 14 (2007) 379-388. https://doi.org/10.1007/s10820-007-9056-y
  15. D. Mo, J. Cai, Y.L. Li, Y.D. Wang, Mater. Sci. Forum 913 (2018) 642-649. https://doi.org/10.4028/www.scientific.net/MSF.913.642
  16. F. Yazdandoost, R. Mirzaeifar, Comput. Mater. Sci. 131 (2017) 108-119. https://doi.org/10.1016/j.commatsci.2017.01.027
  17. S.J. Zinkle, K. Farrell, J. Nucl. Mater. 168 (1989) 262-267. https://doi.org/10.1016/0022-3115(89)90591-6
  18. B.N. Singh, A. Horsewell, D.S. Gelles, F.A. Garner, J. Nucl. Mater. 191-194 (1992) 1172-1176. https://doi.org/10.1016/0022-3115(92)90659-9
  19. C.W. Chen, R.W. Buttry, Radiat. Eff. 56 (1981) 219-228. https://doi.org/10.1080/00337578108229894
  20. W.Z. Han, E.G. Fu, M.J. Demkowicz, Y.Q. Wang, A. Misra, J. Mater. Res. 28 (2013) 2763-2770. https://doi.org/10.1557/jmr.2013.283
  21. J.H. Zhang, W.B. Liu, P.H. Chen, H. He, C.H. He, D. Yun, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 451 (2019) 99-103. https://doi.org/10.1016/j.nimb.2019.05.014
  22. D. Terentyev, X. He, A. Serra, J. Kuriplach, Comput. Mater. Sci. 49 (2010) 419-429. https://doi.org/10.1016/j.commatsci.2010.05.033
  23. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327 (2010) 1631-1634. https://doi.org/10.1126/science.1183723
  24. T.G. Zocco, A.J. Schwartz, J. Occup. Med. 55 (2003) 24-27.
  25. A.J. Schwartz, M.A. Wall, T.G. Zocco, W.G. Wolfer, Phil. Mag. 85 (2005) 479-488. https://doi.org/10.1080/02678370412331320026
  26. F.B. Li, G. Ran, N. Gao, S.Q. Zhao, N. Li, Chin. Phys. B 28 (2019), 085203. https://doi.org/10.1088/1674-1056/28/8/085203
  27. Z.Y. Liu, B. He, X. Qu, L.B. Niu, R.S. Li, F. Wang, Phys. Rev. B 28 (2019), 083401.
  28. A. Kubota, W.G. Wolfer, S.M. Valone, M.I. Baskes, J. Comput. Aided Mater. Des. 14 (2007) 367-378. https://doi.org/10.1007/s10820-007-9057-x
  29. G. Jomard, L. Berlu, G. Rosa, P. Faure, J. Nadal, N. Baclet, J. Alloys Compd. 444-445 (2007) 310-313. https://doi.org/10.1016/j.jallcom.2006.10.157
  30. B.Y. Ao, J.X. Xia, P.H. Chen, W.Y. Hu, X.L. Wang, Chin. Phys. B 21 (2012), 026103. https://doi.org/10.1088/1674-1056/21/2/026103
  31. S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  32. M.I. Baskes, Phys. Rev. B 46 (1992) 2727-2742. https://doi.org/10.1103/PhysRevB.46.2727
  33. M.I. Baskes, Phys. Rev. B 62 (2000) 15532-15537. https://doi.org/10.1103/PhysRevB.62.15532
  34. M.I. Baskes, K. Muralidharan, M. Stan, F.J. Cherne, J. Occup. Med. 55 (2003) 41-50.
  35. J.F. Ziegler, J.P. Biersack, Treatise on Heavy-Ion Science, 1985, pp. 93-129.
  36. A.V. Karavaev, V.V. Dremov, G.V. Ionov, J. Nucl. Mater. 496 (2017) 85-96. https://doi.org/10.1016/j.jnucmat.2017.09.005
  37. J.W. Cahn, Y. Mishin, A. Suzuki, Acta Mater. 54 (2006) 4953-4975. https://doi.org/10.1016/j.actamat.2006.08.004
  38. A. Stukowski, Model. Simulat. Mater. Sci. Eng. 18 (2009), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  39. A. Suzuki, Y. Mishin, Interface Sci. 11 (2003) 425-437. https://doi.org/10.1023/A:1026195911339
  40. A. Arjhangmehr, S.A.H. Feghhi, Sci. Rep. 6 (2016) 23333. https://doi.org/10.1038/srep23333
  41. X.Y. Li, W. Liu, Y.C. Xu, C.S. Liu, Q.F. Fang, B.C. Pan, J.L. Chen, G.N. Luo, Z.G. Wang, Nucl. Fusion 53 (2013) 123014. https://doi.org/10.1088/0029-5515/53/12/123014
  42. S.C. Hernandez, F.J. Freibert, R.G. Hoagland, B.P. Uberuaga, J.M. Wills, Phys. Rev. 2 (2018), 085005.
  43. G. Robert, A. Pasturel, B. Siberchicot. Europhysics Letter 71 (2005) 412-417. https://doi.org/10.1209/epl/i2005-10094-2
  44. X.M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, B.P. Uberuaga, Phys. Rev. B 85 (2012) 214103. https://doi.org/10.1103/PhysRevB.85.214103
  45. M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88 (2002) 125505. https://doi.org/10.1103/PhysRevLett.88.125505

Cited by

  1. An approximate in-situ method for investigating irradiation damage of grain boundary vol.29, 2021, https://doi.org/10.1016/j.nme.2021.101056