DOI QR코드

DOI QR Code

Effects of electronic energy deposition on pre-existing defects in 6H-SiC

  • Liao, Wenlong (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • He, Huan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Li, Yang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Wenbo (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zang, Hang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Wei, Jianan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • He, Chaohui (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2020.07.09
  • Accepted : 2021.01.19
  • Published : 2021.07.25

Abstract

Silicon carbide is widely used in radiation environments due to its excellent properties. However, when exposed to the strong radiation environment constantly, plenty of defects are generated, thus causing the material performance downgrades or failures. In this paper, the two-temperature model (2T-MD) is used to explore the defect recovery process by applying the electronic energy loss (Se) on the pre-damaged system. The effects of defect concentration and the applied electronic energy loss on the defect recovery process are investigated, respectively. The results demonstrate that almost no defect recovery takes place until the defect density in the damage region or the local defect density is large enough, and the probability of defect recovery increases with the defect concentration. Additionally, the results indicate that the defect recovery induced by swift heavy ions is mainly connected with the homogeneous recombination of the carbon defects, while the probability of heterogeneous recombination is mainly dependent on the silicon defects.

Keywords

Acknowledgement

This work was supported by Science Challenge Project No. TZ2018004, the National Natural Science Foundation of China (Grant No. 11835006, 11775167, 11690040, 11690043, 11975179, 11705137), and China Postdoctoral Science Foundation (No. 2019M663738).

References

  1. S.J. Zinkle, L.L. Snead, Influence of irradiation spectrum and implanted ions on the amorphization of ceramics, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 116 (1-4) (1996) 92-101, https://doi.org/10.1016/0168-583X(96)00016-X.
  2. C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang, Structural and electronic properties of cubic, 2H, 4H, and 6H SiC, Phys. Rev. B 49 (7) (1994) 4485, https://doi.org/10.1103/PhysRevB.49.4485.
  3. P. Fenici, A.J. Frias Rebelo, R.H. Jones, A. Kohyama, L.L. Snead, Current status of SiC/SiC composites R & D, J. Nucl. Mater. 258 (1998) 215-225, https://doi.org/10.1016/S0022-3115(98)00303-1.
  4. R.A. Verrall, M.D. Vlajic, V.D. Krstic, Silicon carbide as an inert-matrix for a thermal reactor fuel, J. Nucl. Mater. 274 (1-2) (1999) 54-60, https://doi.org/10.1016/S0022-3115(99)00089-6.
  5. W. Jiang, W.J. Weber, S. Thevuthasan, D.E. McCready, Damage accumulation and annealing in 6H-SiC irradiated with Si+, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 143 (3) (1998) 333-341, https://doi.org/10.1016/S0168-583X(98)00381-4.
  6. M. Backman, M. Toulemonde, O.H. Pakarinen, N. Juslin, F. Djurabekova, K. Nordlund, Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC, Comput. Mater. Sci. 67 (2013) 261-265, https://doi.org/10.1016/j.commatsci.2012.09.010.
  7. E. Zarkadoula, G. Samolyuk, W.J. Weber, Effects of electron-phonon coupling and electronic thermal conductivity in high energy molecular dynamics simulations of irradiation cascades in nickel, Comput. Mater. Sci. 162 (2019) 156-161, https://doi.org/10.1016/j.commatsci.2019.02.039.
  8. R. Devanathan, W.J. Weber, T. Diaz De La Rubia, Computer simulation of a 10 keV Si displacement cascade in SiC, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 141 (1-4) (1998) 118-122, https://doi.org/10.1016/S0168-583X(98)00084-6.
  9. L. Malerba, J.M. Perlado, Molecular dynamics simulation of irradiation-induced amorphization of cubic silicon carbide, J. Nucl. Mater. 289 (1-2) (2001) 57-70, https://doi.org/10.1016/S0022-3115(00)00684-X.
  10. F. Gao, W.J. Weber, Recovery of close Frenkel pairs produced by low energy recoils in SiC, J. Appl. Phys. 94 (7) (2003) 4348-4356, https://doi.org/10.1063/1.1605254.
  11. D.E. Farrell, N. Bernstein, W.K. Liu, Thermal effects in 10 keV Si PKA cascades in 3C-SiC, J. Nucl. Mater. 385 (3) (2009) 572-581, https://doi.org/10.1016/j.jnucmat.2009.01.036.
  12. W. Li, L. Wang, L. Bian, F. Dong, M. Song, J. Shao, S. Jiang, H. Guo, Threshold displacement energies and displacement cascades in 4H-SiC: molecular dynamic simulations, AIP Adv. 9 (5) (2019), https://doi.org/10.1063/1.5093576,055007.
  13. H. Xue, Y. Zhang, W.J. Weber, In-cascade ionization effects on defect production in 3C silicon carbide, Mater. Res. Lett. 5 (7) (2017) 494-500, https://doi.org/10.1080/21663831.2017.1334241.
  14. A. Audren, I. Monnet, D. Gosset, Y. Leconte, X. Portier, L. Thome, F. Garrido, A. Benyagoub, M. Levalois, N. Herlin-Boime, C. Reynaud, Effects of electronic and nuclear interactions in SiC, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (6) (2009) 976-979, https://doi.org/10.1016/j.nimb.2009.02.033.
  15. A. Benyagoub, A. Audren, L. Thome, F. Garrido, Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide, Appl. Phys. Lett. 89 (24) (2006) 241914, https://doi.org/10.1063/1.2405410.
  16. V.A. Skuratov, J.O. Connell, A.S. Sohatsky, J. Neethling, TEM study of damage recovery in SiC by swift Xe ion irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 327 (2014) 89-92, https://doi.org/10.1016/j.nimb.2013.10.082.
  17. A. Benyagoub, Quantitative analysis of the epitaxial recrystallization effect induced by swift heavy ions in silicon carbide, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 365 (2015) 376-379, https://doi.org/10.1016/j.nimb.2015.07.027.
  18. A. Debelle, L. Thome, I. Monnet, F. Garrido, O.H. Pakarinen, W.J. Weber, Ioni- zation-induced thermally activated defect-annealing process in SiC, Phys. Rev. Mater. 3 (6) (2019), https://doi.org/10.1103/PhysRevMaterials.3.063609,063609.
  19. X. Wang, J. Li, J. Wang, J. Song, F. Zhao, H. Tang, B. Li, A. Xiong, Microstructure investigation of damage recovery in SiC by swift heavy ion irradiation, Mater. Des. Process. Commun. 1 (5) (2019) e87, https://doi.org/10.1002/mdp2.87.
  20. Y. Zhang, H. Xue, E. Zarkadoula, R. Sachan, C. Ostrouchov, P. Liu, X. lin Wang, S. Zhang, T.S. Wang, W.J. Weber, Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation, Curr. Opin. Solid State Mater. Sci. 21 (6) (2017) 285-298, https://doi.org/10.1016/j.cossms.2017.09.003.
  21. Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, W.J. Weber, Ionization-induced annealing of pre-existing defects in silicon carbide, Nat. Commun. 6 (1) (2015) 8049, https://doi.org/10.1038/ncomms9049.
  22. L. Thome, A. Debelle, F. Garrido, P. Trocellier, Y. Serruys, G. Velisa, S. Miro, Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam, Appl. Phys. Lett. 102 (14) (2013) 141906, https://doi.org/10.1063/1.4801518.
  23. L. Thome, G. Velis , a, A. Debelle, S. Miro, F. Garrido, P. Trocellier, Y. Serruys, Behavior of nuclear materials irradiated with a dual ion beam, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 326 (2014) 219-222, https://doi.org/10.1016/j.nimb.2013.09.054.
  24. W.J. Weber, D.M. Duffy, L. Thome, Y. Zhang, The role of electronic energy loss in ion beam modification of materials, Curr. Opin. Solid State Mater. Sci. 19 (1) (2015) 1-11, https://doi.org/10.1016/j.cossms.2014.09.003.
  25. A. Benyagoub, A. Audren, Study of the damage produced in silicon carbide by high energy heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (8-9) (2009) 1255-1258, https://doi.org/10.1016/j.nimb.2009.01.026.
  26. S. Sorieul, X. Kerbiriou, J.M. Costantini, L. Gosmain, G. Calas, C. Trautmann, Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation, J. Phys. Condens. Matter 24 (12) (2012) 125801, https://doi.org/10.1088/0953-8984/24/12/125801.
  27. I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, J. Mater. Chem. 16 (20) (2006) 1911-1918, https://doi.org/10.1039/B517931A.
  28. A.E. Ismail, J.A. Greathouse, P.S. Crozier, S.M. Foiles, Electron-ion coupling effects on simulations of radiation damage in pyrochlore waste forms, J. Phys. Condens. Matter 22 (22) (2010) 225405, https://doi.org/10.1088/0953-8984/22/22/225405.
  29. D.M. Duffy, A.M. Rutherford, Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations, J. Phys. Condens. Matter 19 (1) (2006), 016207, https://doi.org/10.1088/0953-8984/19/1/016207.
  30. H. Hensel, H.M. Urbassek, Preferential effects in low-energy Si bombardment of SiC, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 142 (3) (1998) 287-294, https://doi.org/10.1016/S0168-583X(98)00284-5.
  31. I.T. Todorov, W. Smith, U.K. Cheshire, The DL POLY 4 User Manual, STFC, STFC Daresbury Lab, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, 2011. Version. 4(0).
  32. A.M. Rutherford, D.M. Duffy, The effect of electron-ion interactions on radiation damage simulations, J. Phys. Condens. Matter 19 (49) (2007) 496201, https://doi.org/10.1088/0953-8984/19/49/496201.
  33. C.P. Race, D.R. Mason, M.W. Finnis, W.M.C. Foulkes, A.P. Horsfield, A.P. Sutton, The treatment of electronic excitations in atomistic models of radiation damage in metals, Rep. Prog. Phys. 73 (11) (2010) 116501, https://doi.org/10.1088/0034-4885/73/11/116501.
  34. M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 166 (2000) 903-912, https://doi.org/10.1016/S0168-583X(99)00799-5.
  35. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators, Mat. Fys. Medd. 52 (2006) 263-292.
  36. A. Mozumder, Track-core radius of charged particles at relativistic speed in condensed media, J. Chem. Phys. 60 (3) (1974) 1145-1148, https://doi.org/10.1063/1.1681125.
  37. M. Toulemonde, J.M. Costantini, C. Dufour, A. Meftah, E. Paumier, F. Studer, Track creation in SiO2 and BaFe12O19 by swift heavy ions: a thermal spike description, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 116 (1-4) (1996) 37-42, https://doi.org/10.1016/0168-583X(96)00007-9.
  38. B. Gervais, S. Bouffard, Simulation of the primary stage of the interaction of swift heavy ions with condensed matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 88 (4) (1994) 355-364, https://doi.org/10.1016/0168-583X(94)95384-8.
  39. W. Liao, C. He, H. He, Molecular dynamics simulation of displacement damage in 6H-SiC, Radiat. Eff. Defect Solid 174 (9-10) (2019) 729-740, https://doi.org/10.1080/10420150.2019.1649260.
  40. S. Zhao, G. Ran, Y. Guo, Q. Han, S. Liu, F. Gao, Study on the mechanism of helium platelets formation at low temperatures in SiC from the perspective of atomic diffusion, J. Nucl. Mater. 542 (2020) 152507, https://doi.org/10.1016/j.jnucmat.2020.152507.
  41. M.J. Zheng, N. Swaminathan, D. Morgan, I. Szlufarska, Energy barriers for point-defect reactions in 3C-SiC, Phys. Rev. B 88 (5) (2013), 054105, https://doi.org/10.1103/PhysRevB.88.054105.
  42. G. Roma, J.P. Crocombette, Evidence for a kinetic bias towards antisite formation in SiC nano-decomposition, J. Nucl. Mater. 403 (1-3) (2010) 32-41, https://doi.org/10.1016/j.jnucmat.2010.06.001.
  43. T. Lingner, S. Greulich Weber, J.M. Spaeth, U. Gerstmann, E. Rauls, Z. Hajnal, T. Frauenheim, H. Overhof, Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancyecarbon antisite pair, Phys. Rev. B 64 (24) (2001) 245212, https://doi.org/10.1103/PhysRevB.64.245212.
  44. F.X. Zhang, Y. Tong, H. Xue, J.K. Keum, Y. Zhang, A. Boulle, A. Debelle, W.J. Weber, Strain engineering 4H-SiC with ion beams, Appl. Phys. Lett. 114 (22) (2019) 221904, https://doi.org/10.1063/1.5109226.