Acknowledgement
The authors gratefully acknowledge scholarships from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - Brasil (CNPq). Thanks also to Instituto de Engenharia Nuclear (IEN).
References
- M.S. Abouelwafa, S.M. Kendall, The measurement of component ratios in multiphase systems using gamma-ray attenuation, J. Phys. E Sci. Instrum. 13 (1980) 341-345. https://doi.org/10.1088/0022-3735/13/3/022
- Y. Mi, M. Ishii, L.H. Tsoukalas, Vertical two-phase flow identification using advanced instrumentation and neural networks, Nucl. Eng. Des. 184 (1998) 409-420. https://doi.org/10.1016/S0029-5493(98)00212-X
- R. Hanus, L. Petryka, M. Zych, Velocity measurement the liquid-solid flow in vertical pipeline using gamma-ray absorption and weighted cross-correlation, Flow Meas. Instrum. 40 (2014) 58-63. https://doi.org/10.1016/j.flowmeasinst.2014.08.007
- R. Hanus, M. Zych, M. Kusy, M. Jaszczur, L. Petryka, Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods, Flow Meas. Instrum. 60 (2018) 17-23. https://doi.org/10.1016/j.flowmeasinst.2018.02.008
- G.H. Roshani, E. Nazemi, M.M. Roshani, A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function, Appl. Radiat. Isot. 123 (2017) 60-68. https://doi.org/10.1016/j.apradiso.2017.02.023
- M. Zych, R. Hanus, B. Wilk, L. Petryka, D. Swisulski, Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows, Measurement 129 (2018) 288-295, https://doi.org/10.1016/j.measurement.2018.07.035.
- V. Mosorov, M. Zych, R. Hanus, D. Sankowski, A. Saoud, Improvement of flow velocity measurement algorithms based on correlation function and twin plane electrical capacitance tomography, Sensors 20 (2020) 306, https://doi.org/10.3390/s20010306.
- R. Hanus, M. Zych, R. Chorzepa, A. Golijanek-Jedrzejczyk, Investigations of the methods of time delay measurement of stochastic signals using crosscorrelation with the hilbert transform, in: IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, vol. 2020, 2020, pp. 238-242, https://doi.org/10.1109/MELECON48756.2020.9140630.
- M. Khorsandi, S.A. Feghhi, Design and construction of a prototype gamma-ray densitometer for petroleum products monitoring applications, Measurement 44 (2011) 1512-1515. https://doi.org/10.1016/j.measurement.2011.06.001
- W.L. Salgado, R.S.F. Dam, C.M. Barbosa, A.X. Silva, C.M. Salgado, Monitoring system of oil by-products interface in pipelines using the gamma radiation attenuation, Appl. Radiat. Isot. 160 (2020), https://doi.org/10.1016/j.apradiso.2020.109125.
- A.A. Abdulrahman, E.M. Shokir, Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation, J. King Saud Univ. - Eng. Sci. 23 (2011) 123-129. https://doi.org/10.1016/j.jksues.2011.03.004
- C.M. Salgado, L.E.B. Brandao, C.C. Conti, W.L. Salgado, Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks, Appl. Radiat. Isot. 116 (2016) 143-149. https://doi.org/10.1016/j.apradiso.2016.08.001
- G.H. Roshani, R. Hanus, A. Khazaei, M. Zych, E. Nazemi, V. Mosorov, Density and velocity determination for single-phase flow based on radiotracer technique and neural networks, Flow Meas. Instrum. 61 (2018) 9-14. https://doi.org/10.1016/j.flowmeasinst.2018.03.006
- J.S. Lin, M.M. Chen, B.T. Chao, A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds, AIChE J. 31 (3) (1985) 465-473. https://doi.org/10.1002/aic.690310314
- F. Larachi, G. Kennedy, J. Chaouki, A gamma-ray detection system for 3-D particle tracking in multiphase reactors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 338 (2-3) (1994) 568-576. https://doi.org/10.1016/0168-9002(94)91343-9
- L. Godfroy F. Larachi, G. Kennedy, B. Grandjean, J. Chaouki, On-line flow visualization in multiphase reactors using neural networks, Appl. Radiat. Isot. 48 (1997) 225-235. https://doi.org/10.1016/S0969-8043(96)00183-2
- S. Bhusarapu, M.H. Al-Dahhan, M.P. Dudukovic, S. Trujillo, T.J. O'Hern, Experimental study of the solids velocity field in gasesolid risers, Ind. Eng. Chem. Res. 44 (25) (2005) 9739. https://doi.org/10.1021/ie050297f
- N. Devanathan, D. Moslemian, M.P. Dudukovic, Flow mapping in bubble columns using CARPT, Chem. Eng. Sci. 45 (1990) 2285-2291. https://doi.org/10.1016/0009-2509(90)80107-P
- S. Azizi, A. Yadav, Y.M. Lau, U. Hampel, S. Roy, M. Schubert, On the experimental investigation of gas-liquid flow in bubble columns using ultrafast Xray tomography and radioactive particle tracking, Chem. Eng. Sci. 170 (2017) 320-331, https://doi.org/10.1016/j.ces.2017.02.015.
- M.A.S.M. Yunos, M.D.A. Usang, H. Ithnin, S.A. Hussain, H.M. Yusoff, S. Sipaun, Reconstruction algorithm of calibration map for RPT techniques in quadrilateral bubble column reactor using MCNPX code, European Journal of Engineering Research and Science 3 (1) (2018).
- M.A.S.M. Yunos, S.A. Hussain, S.M. Sipaun, Industrial radiotracer application in flow rate measurement and flowmeter calibration using 99mTc and 198Au nanoparticles radioisotope, Appl. Radiat. Isot. 143 (2019) 24-28. https://doi.org/10.1016/j.apradiso.2018.10.008
- A. Yadav, T.K. Gaurav, H.J. Pant, S. Roy, Machine Learning Based Position-rendering Algorithms for Radioactive Particle Tracking Experimentation, American Institute of Chemical Engineers, 2020, https://doi.org/10.1002/aic.16954.
- L. Spreutels, B. Haut, R. Legros, F. Bertrand, J. Chaouki, Experimental investigation of solid particles flow in a conical spouted bed using radioactive particle tracking, AIChE J. 62 (2015) 26-37. https://doi.org/10.1002/aic.15014
- R.S.F. Dam, T.P. Teixeira, W.L. Salgado, C.M. Salgado, A new application of radioactive particle tracking using MCNPX code and artificial neural network, Appl. Radiat. Isot. 149 (2019) 38-47. https://doi.org/10.1016/j.apradiso.2019.04.011
- R.S.F. Dam, C.M. Barbosa, J.M. Lopes, J.L. Thalhofer, L.B. Silva, C.M. Salgado, A.X. Silva, Radioactive particle tracking methodology to evaluate concrete mixer using MCNPX code, Radiat. Phys. Chem. 160 (2019) 26-29. https://doi.org/10.1016/j.radphyschem.2019.03.027
- J. Chaouki, F. Larachi, P. Dudukovic, Non-Invasive Monitoring of Multiphase Flows, Elsevier Science B.V., Amsterdam, The Netherlands, 1997.
- V. Blet, P. Berne, S. Legoupil, et al., Radioactive tracing as aid for diagnosing chemical reactors, Oil and Gas Science and Technology - Rev. IFP. 55 (2) (2000) 171-183. https://doi.org/10.2516/ogst:2000010
- J. Doucet, F. Bertrand, J. Chaouki, An extended radioactive particle tracking method for systems with irregular moving boundaries, Powder Technol. 181 (2) (2008) 195-204. https://doi.org/10.1016/j.powtec.2006.12.019
- V. Mosorov, J. Abdullah, MCNP5 code in radioactive particle tracking, Appl. Radiat. Isot. 69 (2011) 1287-1293. https://doi.org/10.1016/j.apradiso.2011.04.028
- C.M. Salgado, L.E.B. Brandao, C.M.N.A. Pereira, R. Schirru, R. Ramos, A.X. Silva, Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network, Appl. Radiat. Isot. 67 (2009) 1812-1818. https://doi.org/10.1016/j.apradiso.2009.02.093
- C.M. Salgado, C.M.N.A. Pereira, R. Schirru, L.E.B. Brandao, Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks, Prog. Nucl. Energy 52 (6) (2010) 555-562. https://doi.org/10.1016/j.pnucene.2010.02.001
- G.H. Roshani, A. Karami, A. Salehizadeh, E. Nazemi, The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water, Appl. Radiat. Isot. 129 (2017) 156-162. https://doi.org/10.1016/j.apradiso.2017.08.027
- R.R.W. Affonso, R.S.F. Dam, W.L. Salgado, A.X. Silva, C.M. Salgado, Flow regime and volume fraction identification using nuclear techniques, artificial neural networks and computational fluid dynamics, Appl. Radiat. Isot. 159 (2020) 109103, https://doi.org/10.1016/j.apradiso.2020.109103.
- C.M. Salgado, R.S.F. Dam, W.L. Salgado, R.R.W. Affonso, C.M.N.A. Pereira, R. Schirru, The comparison of different multilayer perceptron and General Regression Neural Networks for volume fraction prediction using MCNPX code, Appl. Radiat. Isot. 162 (2020), https://doi.org/10.1016/j.apradiso.2020.109170.
- W.L. Salgado, R.S.F. Dam, T.P. Teixeira, C.C. Conti, C.M. Salgado, Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer, Radiat. Phys. Chem. 168 (2020) 108549, https://doi.org/10.1016/j.radphyschem.2019.108549.
- G.H. Roshani, E. Nazemi, Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray and neural network, Flow Meas. Instrum. 58 (2017) 6-11. https://doi.org/10.1016/j.flowmeasinst.2017.09.007
- C.M.N.A. Pereira, R. Schirru, K.J. Gomes, J.L. Cunha, Artificial Neural Networks for Radiation Dose Prediction in Nuclear Emergencies: Preliminary Investigations. Advances in Computer Science Research, Atlantis Press ISSN, 2016, https://doi.org/10.2991/msota-16.2016.98, 2352-538X.
- R.K. Srivastava, K. Greff, J. Schmidhuber, Training Very Deep Networks. The Swiss AI Lab IDSIA/USI/SUPSI, Neural Information Processing Systems, NIPS), 2015.
- M. Gheisari, G. Wang, M.Z.A. Bhuiyan, A survey on deep learning in big data, in: IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, EUC), Guangzhou, 2017, pp. 173-180.
- F. Chen, M.R. Jahanshahi, NB-CNN, Deep learning-based crack detection using convolutional neural network and naive bayes data fusion, in: IEEE Transactions on Industrial Electronics, vol. 65, 2018, pp. 4392-4400, https://doi.org/10.1109/TIE.2017.2764844, 5.
- F.D.S. Ribeiro, F. Caliva, D. Chionis, A. Dokhane, A. Mylonakis, C. Demaziere, G. Leontidis, S.D. Kollias, Towards a deep unified framework for nuclear reactor perturbation analysis, in: IEEE Symposium Series on Computational Intelligence, SSCI), Bangalore, India, 2018, pp. 120-127, https://doi.org/10.1109/SSCI.2018.8628637.
- F. Caliva, F.D.S. Ribeiro, A. Mylonakis, C. Demaziere, P. Vinai, G. Leontidis, S. Kollias, A deep learning approach to anomaly detection in nuclear reactors, in: International Joint Conference on Neural Networks, IJCNN), Rio de Janeiro, 2018, pp. 1-8, https://doi.org/10.1109/IJCNN.2018.8489130.
- F.S.M. Desterro, M.C. Santos, K.J. Gomes, A. Heimlich, R. Schirru, C.M.N.A. Pereira, Development of a Deep Rectifier Neural Network for dose prediction in nuclear emergencies with radioactive material releases, Prog. Nucl. Energy 118 (2020), https://doi.org/10.1016/j.pnucene.2019.103110.
- M.C. Santos, V.H.C. Pinheiro, F.S.M. Desterro, R.K. Avellar, R. Schirru, A.S. Nicolau, A.M.M. Lima, Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant, Ann. Nucl. Energy 133 (2019) 400-408. https://doi.org/10.1016/j.anucene.2019.05.039
- V.H. Pinheiro, M.C. Santos, F.S.M. Desterro, R. Schirru, C.M.N.A. Pereira, Nuclear Power Plant accident identification system with "don't know" response capability: novel deep learning-based approaches, Ann. Nucl. Energy 137 (2020), https://doi.org/10.1016/j.anucene.2019.107111.
- X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks. Proceedings of the fourteenth international conference on artificial intelligence and statistics, in: PMLR, vol. 15, 2011, pp. 315-323.
- D.B. Pelowitz, MCNPX TM User's Manual. Version 2.5.0, Los Alamos National Laboratory, 2005. LA-CP-05-0369.
- S. Haykin, Neural Networks, A Comprehensive Foundation, second ed., Prentice Hall, 1999.
- J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. Off. J. Int. Neural Netw. Soc. 61 (2015) 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444. https://doi.org/10.1038/nature14539
- B.B. Benuwa, Y.Z. Zhan, B. Ghansah, D.K. Wornyo, F.B. Kataka, A review of deep machine learning, Int. J. Eng. Res. Afr. 24 (2016) 124-136. https://doi.org/10.4028/www.scientific.net/JERA.24.124.
- X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. AISTATS, vol. 9, 2010, pp. 249-256.
- D. Pedamonti, Comparison of Non-linear Activation Functions for Deep Neural Networks on MNIST Classification Task, CoRR - Computing Research Repository, 2018.
- R.J. McConn Jr., C.J. Gesh, R.A. Rucker, R.G. Williams II, Compendium of Material Composition Data for Radiation Transport Modeling, Pacific Northwest National Laboratory, 2011. PNNL-15870, Rev. 1.
- M.J. Berger, S.M. Seltzer, Response functions for sodium iodide scintillation detectors, Nucl. Instrum. Methods 104 (1972) 317-332. https://doi.org/10.1016/0029-554X(72)90543-5
- C.M. Salgado, L.E.B. Brandao, R. Schirru, C.M.N.A. Pereira, C.C. Conti, Validation of aNaI(Tl) detector's model developed with MCNP-X code, Prog. Nucl. Energy 59 (2012) 19-25. https://doi.org/10.1016/j.pnucene.2012.03.006
- J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2012) 281-305.
- J.M. Ortiz-Rodriguez, M.R. Martinez-Blanco, J.M. Varamontes, H.R. Vega-Carrillo, Robust design of artificial neural networks methodology in neutron spectrometry, in: K. Prof Suzuki (Ed.), Artificial Neural Networks - Architectures and Application, s, 2013.
- J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing Systems, vol. 25, 2012, pp. 2960-2968.
- I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization for Machine Learning: A Practical Guidebook, SigOpt, San Francisco, CA 94108, 2015 arXiv: 1612.04858.
- B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. Freitas, Taking the human out of the loop: a review of bayesian optimization, in: Proceedings of the IEEE, vol. 104, 2016, pp. 148-175, 1. https://doi.org/10.1109/JPROC.2015.2494218
- M. Pumperla, Hyperas: a Very Simple Convenience Wrapper Around Hyperopt for Fast Prototyping with Keras Models, 2017. https://maxpumperla.com/hyperas/. (Accessed 1 June 2020).
- D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), ICLR, 2015 arXiv:1511.07289.
- D.P. Kingma, J. Ba, Adam, A method for stochastic optimization, in: 3rd International Conference for Learning Representations, San Diego, 2015 arXiv:1412.6980.
Cited by
- Application of radioactive particle tracking and an artificial neural network to calculating the flow rate in a two-phase (oil–water) stratified flow regime vol.180, 2021, https://doi.org/10.1016/j.apradiso.2021.110061
- Transfer learning for radioactive particle tracking vol.248, pp.no.pb, 2021, https://doi.org/10.1016/j.ces.2021.117190