Acknowledgement
The authors are grateful for the support of the Natural Science Foundation of China (Grant No: U20B2013, U1867219, 11675161).
References
- Y.S. Kim, G.L. Hofman, Fission product induced swelling of U-Mo alloy fuel [J], J. Nucl. Mater. 419 (1-3) (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
- Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of U-Mo alloy fuel [J], J. Nucl. Mater. 437 (1-3) (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
- F. Yan, et al., Effects of UMo irradiation creep on the thermo-mechanical behaviorin monolithic UMo/Al fuel plates [J], J. Nucl. Mater. 524 (2019) 209-217. https://doi.org/10.1016/j.jnucmat.2019.07.006
- X. Jian, X. Kong, S. Ding, A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles [J], Nuclear Engineering and Technology 51 (6) (2019).
- Y. Cui, S. Ding, Z. Chen, et al., Modifications and applications of the mechanistic gaseous swelling model for UMo fuel [J], J. Nucl. Mater. 457 (2015) 157-164. https://doi.org/10.1016/j.jnucmat.2014.11.065
- M.K. Meyer, G.A. Moore, J.F. Jue, et al., Investigation of the Cause of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments (R), Idaho National Laboratory, 2012.
- M.K. Meyer, J. Gan, J.F. Jue, et al., Irradiation performance of U-Mo monolithic fuel [J], Nuclear Engineering and Technology 2 (46) (2014) 169-182.
- D.R. Miller, General Electric Company, Critical flow velocities for collapse of reactor parallel-plate fuel assemblies/[J], J. Eng. Gas Turbines Power 82 (2) (1960).
- J.G. Mantecon, M.M. Neto, Numerical methodology for fluid-structure interaction analysis of nuclear fuel plates under axial flow conditions, Nucl. Eng. Des. 333 (FEB) (2018) 76-86. https://doi.org/10.1016/j.nucengdes.2018.04.009
- J.G. Mantecon, M.M. Neto, Numerical analysis on stability of nuclear fuel plates with inlet support comb [J], Nucl. Eng. Des. 342 (FEB) (2019) 240-248. https://doi.org/10.1016/j.nucengdes.2018.12.009
- J.C. Kennedy, Development and Experimental Benchmarking of Numeric Fluid Structure Interaction Models for Research Reactor Fuel Analysis, PhD Dissertation, University of Missouri, 2015.
- Mark Ho, Guang Hong, A.N.F. Mack, Experimental investigation of flow-induced vibration in a parallel plate reactor fuel assembly, in: 15th Austral-asian Fluid Mechanics Conference, 2004.
- Y. Deng, Y. Wu, D. Zhang, et al., Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel [J], Prog. Nucl. Energy 95 (MAR.) (2017) 8-22. https://doi.org/10.1016/j.pnucene.2016.11.007
- Y. He, P. Chen, Y. Wu, et al., Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way [J], Nucl. Eng. Des. 328 (2018) 27-35. https://doi.org/10.1016/j.nucengdes.2017.12.019
- R. Liu, W. Zhou, Multiphysics modeling of novel UO2-BeO sandwich fuel performance in a light water reactor [J], Ann. Nucl. Energy 109 (nov) (2017) 298-309. https://doi.org/10.1016/j.anucene.2017.05.037
- Q. Lu, S. Qiu, G.H. Su, Development of A Thermal-hydraulic analysis code for research reactors with plate fuels [J], Ann. Nucl. Energy 36 (4) (2009) 433-447. https://doi.org/10.1016/j.anucene.2008.11.038
- D. Jo, J. Park, H. Chae, Development of thermal hydraulic and margin analysis code for steady state forced and natural convective cooling of plate type fuel research reactors [J], Prog. Nucl. Energy 71 (mar) (2014) 39-51. https://doi.org/10.1016/j.pnucene.2013.11.006
- G. Daxin, H. Shanfang, W. Guanbo, et al., Heat transfer calculation on plate-type fuel assembly of high flux research reactor [J], Science & Technology of Nuclear Installations (2015) 1-13, 2015.
- L. Li, D. Fang, D. Zhang, et al., Flow and heat transfer characteristics in plate-type fuel channels after formation of blisters on fuel elements [J], Ann. Nucl. Energy 134 (2019) 284-298. https://doi.org/10.1016/j.anucene.2019.06.030
- Amgad Salama, CFD investigation of flow inversion in typical MTR research reactor undergoing thermalehydraulic transients, Ann. Nucl. Energy 38 (7) (2011) 1578-1592. https://doi.org/10.1016/j.anucene.2011.03.005
- M.K. Meyer, D.M. Wachs, J.F. Jue, et al., U.S. Progress in the development of very high density low enrichment research reactor fuels, in: European Research Reactor Conference, 2012. Brussels, Belgium.
- Z. Mei, L. Liang, Y.S. Kim, T. Wiencek, Grain Growth and Bubble Evolution in U-Mo Alloy by Multiscale Simulations, RERTR, Seoul, South Korea, 2015, 2015.
- H. Palancher, A. Bonnin, V. Honkimaki, et al., Quantitative crystallographic analysis of as-fabricated full size U-Mo/Al(Si) nuclear fuel plates [J], J. Alloys Compd. 527 (none) (2012), 0-65.
- Kusunoki, T Murayama, Y Wada, et al. Current Status of U-Mo Conversion Program in JRR-3.
- M. Hirano, Y. Sudo, Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3 [J], J. Nucl. Sci. Technol. 23 (4) (1986) 352-368. https://doi.org/10.1080/18811248.1986.9734992
- M.A. Albati, O.S. Al-Yahia, J. Park, et al., Thermal hydraulic analyses of JRR-3: code-to-code comparison of COOLOD-N2 and TMAP [J], Prog. Nucl. Energy 71 (mar) (2014) 1-8. https://doi.org/10.1016/j.pnucene.2013.10.015
- A. Salama, M.F. El-Amin, S. Sun, Three-dimensional, numerical investigation of flow and heat transfer in rectangular channels subject to partial blockage [J], Heat Tran. Eng. 36 (1-4) (2015) 152-165. https://doi.org/10.1080/01457632.2014.909191
- ANSYS Inc, ANSYS FLUENT Documentation - Release 15.0, 2014.
- Xing-min Liu, Guo-jing Tang, Xiao-chun Wu, Core physics scheme study of U-Mo alloy fuel applied in CARR [J], Atomic Energy Sci. Technol. 6 (49) (2015) 1018-1021.
- H. Tduruta, H. Ichikawa, J. Iwasaki et al. Neutronics Design of Upgraded JRR-3 Research Reactor [R].
- X. Jian, S. Ding, Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates [J], Nuclear Engineering and Technology 52 (2020) 802-810. https://doi.org/10.1016/j.net.2019.09.008