DOI QR코드

DOI QR Code

Hydrogen isotope exchange behavior of protonated lithium metal compounds

  • Park, Chan Woo (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sung-Wook (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Sihn, Youngho (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Yang, Hee-Man (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Ilgook (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Kwang Se (Kyungnam College of Information & Technology, Department of Advanced Materials & Chemical Engineering) ;
  • Roh, Changhyun (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Yoon, In-Ho (Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2020.10.06
  • 심사 : 2021.02.15
  • 발행 : 2021.08.25

초록

The exchange behaviors of hydrogen isotopes between protonated lithium metal compounds and deuterated water or tritiated water were investigated. The various protonated lithium metal compounds were prepared by acid treatment of lithium metal compounds with different crystal structures and metal compositions. The protonated lithium metal compounds could more effectively reduce the deuterium concentration in water compared with the corresponding pristine lithium metal compounds. The H+ in the protonated lithium metal compounds was speculated to be more readily exchangeable with hydrons in the aqueous solution compared with Li+ in the pristine lithium metal compounds, and the exchanged heavier isotopes were speculated to be more stably retained in the crystal structure compared with the light protons. When the tritiated water (157.7 kBq/kg) was reacted with the protonated lithium metal compounds, the protonated lithium manganese nickel cobalt oxide was found to adsorb and retain twice as much tritium (163.9 Bq/g) as the protonated lithium manganese oxide (69.9 Bq/g) and the protonated lithium cobalt oxide (75.1 Bq/g) in the equilibrium state.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) No. 2017M2A8A5015148).

참고문헌

  1. G. Vasaru, Tritium Isotope Separation, first ed., CRC Press, 1993.
  2. I. Fairlie, The hazards of tritium-revisited, Med. Conflict Surviv. 24 (2008) 306-319, https://doi.org/10.1080/13623690802374239.
  3. Investigation of the Environmental Fate of Tritium in the Atmosphere, 2009. CC172-51/2009E-PDF.
  4. T.Y. Kong, S. Kim, Y. Lee, J.K. Son, S.J. Maeng, Radioactive effluents released from Korean nuclear power plants and the resulting radiation doses to members of the public, Nucl. Eng. Technol. 49 (2017) 1772-1777, https://doi.org/10.1016/j.net.2017.07.021.
  5. C. Chen, J. Hou, J. Li, X. Chen, C. Xiao, Q. Wang, Y. Gong, L. Yue, L. Zhao, G. Ran, X. Fu, X. Xia, H. Wang, A water distillation detritiation facility and its performance test, Fusion Eng. Des. 153 (2020) 111460, https://doi.org/10.1016/j.fusengdes.2020.111460.
  6. M. Enoeda, T. Yamanishi, H. Yoshida, Y. Naruse, H. Fukui, K. Muta, Hydrogen isotope separation characteristics of cryogenic distillation column, Fusion Eng. Des. 10 (1989) 319-323, https://doi.org/10.1016/0920-3796(89)90071-9.
  7. Y. Ogata, Y. Sakuma, N. Ohtani, M. Kotaka, Tritium separation from heavy water by electrolysis with solid polymer electrolyte, in: J. Radioanal. Nucl. Chem., Springer, 2003, pp. 539-541, https://doi.org/10.1023/A:1022592601787.
  8. J. Aign, B. Wierczinski, A. Turler, Development of a bipolar electrolysis system for tritium accumulation in HTO, J. Radioanal. Nucl. Chem. 277 (2008) 37-42, https://doi.org/10.1007/s10967-008-0706-7.
  9. K.M. Song, S.H. Sohn, D.W. Kang, S.W. Paek, D.H. Ahn, Installation of liquid phase catalytic exchange columns for the Wolsong tritium removal facility, Fusion Eng. Des. 82 (2007) 2264-2268, https://doi.org/10.1016/j.fusengdes.2007.07.026.
  10. W.R.C. Graham, A.E. Everatt, J.R.R. Tremblay, J.M. Miller, D.A. Spagnolo, Demonstration of very high detritiation factors with a pilot-scale CECE facility, in: Fusion Sci. Technol., American Nuclear Society, 2002, pp. 1137-1141, https://doi.org/10.13182/fst02-a22761.
  11. S.K. Sood, R.A.P. Sissingh, O.K. Kveton, Removal and immobilization of tritium from Ontario Hydro's nuclear generating stations, in: Fusion Technol., Taylor & Francis, 1985, pp. 2478-2485, https://doi.org/10.13182/fst85-a24651.
  12. K.M. Song, S.H. Sohn, D.W. Kang, H.S. Chung, Introduction to wolsong tritium removal facility (WTRF), in: 2005 Autumn Meet. Korean Nucl. Soc., Korean Nuclear Society, Busan, 2005.
  13. H. Koyanaka, H. Miyatake, Extracting tritium from water using a protonic manganese oxide spinel, Separ. Sci. Technol. (2015), https://doi.org/10.1080/01496395.2015.1018440, 150527095459001.
  14. T. Jia, Z. Zeng, H. Paudel, D.J. Senor, Y. Duan, First-principles study of the surface properties of γ-LiAlO2: stability and tritium adsorption, J. Nucl. Mater. 522 (2019) 1-10, https://doi.org/10.1016/j.jnucmat.2019.05.007.
  15. A. Taguchi, Y. Kato, R. Akai, Y. Torikai, M. Matsuyama, Tritium removal from tritiated water by organic functionalized SBA-15, Fusion Sci. Technol. 67 (2015) 592-595, https://doi.org/10.13182/FST14-T87.
  16. G.J. Sevigny, R.K. Motkuri, D.W. Gotthold, L.S. Fifield, A.P. Frost, W. Bratton, in: Separation of Tritiated Water Using Graphene Oxide Membrane, Richland, WA (United States), 2015, https://doi.org/10.2172/1222908.
  17. R.R. Bhave, R.T. Jubin, B.B. Spencer, S. Nair, in: Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092, Oak Ridge, TN (United States), 2016, https://doi.org/10.2172/1254093.
  18. H. Koyanaka, S. Fukutani, Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide, J. Radioanal. Nucl. Chem. 318 (2018) 175-182, https://doi.org/10.1007/s10967-018-6022-y.
  19. H. Koyanaka, S. Fukutani, H. Miyatake, Tritium separation from heavy water using a membrane containing deuterated manganese dioxide, J. Radioanal. Nucl. Chem. 322 (2019) 1889-1895, https://doi.org/10.1007/s10967-019-06905-y.
  20. C.W. Park, I.-H. Yoon, Y. Sihn, S.-W. Kim, H.-M. Yang, I. Kim, C. Rho, A State-OfThe-Art Report on the Removal of Tritium from High-Volume Dilute Aqueous Wastes, Daejeon, 2020. KAERI/AR-1270/2020.
  21. T. Yamanishi, H. Kakiuchi, H. Tauchi, T. Yamamoto, I. Yamamoto, Discussions on tritiated water treatment for Fukushima daiichi nuclear power station, Fusion Sci. Technol. 76 (2020) 430-438, https://doi.org/10.1080/15361055.2020.1716454.
  22. H. Koyanaka, O. Matsubaya, Y. Koyanaka, N. Hatta, Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2, J. Electroanal. Chem. 559 (2003) 77-81, https://doi.org/10.1016/S0022-0728(03)00040-8.
  23. C.B. Provis-Evans, E.H.E. Farrar, M.N. Grayson, R.L. Webster, A.K. Hill, Highly sensitive real-time isotopic quantification of water by ATR-FTIR, Anal. Chem. 92 (2020) 7500-7507, https://doi.org/10.1021/acs.analchem.9b05635.
  24. Y. Teng, R. Zuo, J. Wang, Q. Hu, Z. Sun, N. Zeng, Detection of tritium sorption on four soil materials, J. Environ. Radioact. 102 (2011) 212-216, https://doi.org/10.1016/j.jenvrad.2010.12.002.
  25. A. Feltz, J. Topfer, B. Neidnicht, Untersuchungen an elektronenleitenden Oxidsystemen. XXIII. Struktur und Eigenschaften stabiler Spinelle in den Reihen MzNiMn2-ZO4 (M=Li, Fe), Z. Anorg. Allg. Chem. 619 (1993) 39-46, https://doi.org/10.1002/zaac.19936190108.
  26. H. Koyanaka, Y. Ueda, K. Takeuchi, A.I. Kolesnikov, Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature, Sensor. Actuator. B Chem. 183 (2013) 641-647, https://doi.org/10.1016/j.snb.2013.03.074.
  27. Y. Ueda, Y. Tokuda, T. Yoko, K. Takeuchi, A.I. Kolesnikov, H. Koyanaka, Electrochemical property of proton-conductive manganese dioxide for sensoring hydrogen gas concentration, in: Solid State Ionics, Elsevier, 2012, pp. 282-285, https://doi.org/10.1016/j.ssi.2012.04.006.
  28. H. Imaizumi, Effect of tritium on hydrogen isotope exchange reaction in a heterogeneous system, J. Radioanal. Nucl. Chem. Artic. 177 (1994) 229-241, https://doi.org/10.1007/BF02061119.