Acknowledgement
This research was partly supported by the Chung-Ang University research grant in 2019 and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. NRF-2017M2B2B1072552).
References
- N. Aksan, H. Choi, J. Chung, J. Cleveland, F.S. D'Auria, N. Fil, O. Gimenez, M. Ishii, H. Khartabil, K. Korotaev, Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, vol. 1624, IAEA-TECDOC, 2009.
- W. Zhou, B. Wolf, S. Revankar, Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR, Nucl. Eng. Des. 264 (2013) 111-118. https://doi.org/10.1016/j.nucengdes.2012.08.041
- T.L. Schulz, Westinghouse AP1000 advanced passive plant, Nucl. Eng. Des. 236 (14-16) (2006) 1547-1557. https://doi.org/10.1016/j.nucengdes.2006.03.049
- C. Zhao, J. Chen, Dynamic characteristics of AP1000 shield building for various water levels and air intakes considering fluid-structure interaction, Prog. Nucl. Energy 70 (2014) 176-187. https://doi.org/10.1016/j.pnucene.2013.08.002
- A. Bakhmet'Ev, M. Bol'Shukhin, V. Vakhrushev, A. Khizbullin, O. Makarov, V. Bezlepkin, S. Semashko, I. Ivkov, Experimental validation of the cooling loop for a passive system for removing heat from the AES-2006 protective envelope design for the Leningradskaya nuclear power plant site, Atom. Energy 106 (3) (2009) 185-190. https://doi.org/10.1007/s10512-009-9150-1
- J. Xing, D. Song, Y. Wu, HPR1000: advanced pressurized water reactor with active and passive safety, Engineering 2 (1) (2016) 79-87. https://doi.org/10.1016/j.eng.2016.01.017
- B.G. Jeon, H.C. No, Thermal-hydraulic evaluation of passive containment cooling system of improved APR+ during LOCAs, Nucl. Eng. Des. 278 (2014) 190-198. https://doi.org/10.1016/j.nucengdes.2014.07.038
- S.G. Lim, D.H. Kim, J.M. Lee, S.W. Lee, H.G. Kim, H.C. No, Prediction of heat removal performance for passive containment cooling system using MARS-KS code version 1.14. Korea Nuclear Society Spring Meeting, Jeju, Republic of Korea, May 18-19, 2017, pp. 18-19.
- Z. Huang, W. Ma, Performance evaluation of passive containment cooling system of an advanced PWR using coupled RELAP5/Gothic simulation, Nucl. Eng. Des. 310 (2016) 83-92. https://doi.org/10.1016/j.nucengdes.2016.10.004
- S.W. Lee, S. Heo, H.U. Ha, H.G. Kim, The concept of the innovative power reactor, Nuclear Engineering and Technology 49 (7) (2017) 1431-1441. https://doi.org/10.1016/j.net.2017.06.015
- H. Ha, S. Lee, H. Kim, Optimal design of passive containment cooling system for innovative PWR, Nuclear Engineering and Technology 49 (5) (2017) 941-952. https://doi.org/10.1016/j.net.2017.03.005
- L. Changdong, J. Wenying, Y. Jiang, C. Wei, W. Ting, C. Cheng, X. Hong, Experimental and computational analysis of a passive containment cooling system with closed-loop heat pipe technology, Prog. Nucl. Energy 113 (2019) 206-214. https://doi.org/10.1016/j.pnucene.2019.01.004
- KHNP, Hanuel 3,4 Final Safety Analysis Report, 1998.
- E.P.M.F. Rahnm, Gothic Thermal Hydraulics Analysis Package User Manual Version 8.0 (QA), vol. 12, Numerical Applications Inc., 2012. NAI 8907-8909, Rev.
- M. Gavrilas, P. Hejzlar, N.E. Todreas, M.J. Driscoll, Gothic code evaluation of alternative passive containment cooling features, Nucl. Eng. Des. 166 (3) (1996) 427-442. https://doi.org/10.1016/S0029-5493(96)01259-9
- Z.Y. Hung, Y.M. Ferng, W.S. Hsu, B.S. Pei, Y.S. Chen, Analysis of AP1000 containment passive cooling system during a loss-of-coolant accident, Ann. Nucl. Energy 85 (2015) 717-724. https://doi.org/10.1016/j.anucene.2015.06.027
- G. Jimenez, M.K. Fernandez-Cosials, R. Bocanegra, C. Queral, Analysis of the equipment and instrumentation qualification criteria using 3D containment models, Nucl. Eng. Des. 323 (2017) 28-38. https://doi.org/10.1016/j.nucengdes.2017.07.038
- B.U. Bae, B.J. Yun, S. Kim, K.H. Kang, Design of condensation heat exchanger for the PAFS (passive auxiliary feedwater system) of APR+ (advanced power reactor plus), Ann. Nucl. Energy 46 (2012) 134-143. https://doi.org/10.1016/j.anucene.2012.03.029
- J. Bang, J.-H. Hwang, H.G. Kim, D.-W. Jerng, Parametric Analyses for the Design of a Closed-Loop Passive Containment Cooling System, Nuclear Engineering and Technology, 2020.
- C. Byun, D. Jerng, N. Todreas, M. Driscoll, Conceptual design and analysis of a semi-passive containment cooling system for a large concrete containment, Nucl. Eng. Des. 199 (3) (2000) 227-242. https://doi.org/10.1016/S0029-5493(00)00228-4
- E.P.M.F. Rahnm, Gothic Thermal Hydraulic Analysis Package Technical Manual Version 8.0(QA), vol. 19, Numerical Applications Inc., 2012. NAI 8907e06, Rev.
- M. Furuya, F. Inada, T. Van der Hagen, Flashing-induced density wave oscillations in a natural circulation BWR-mechanism of instability and stability map, Nucl. Eng. Des. 235 (15) (2005) 1557-1569. https://doi.org/10.1016/j.nucengdes.2005.01.006
- Y. Kozmenkov, U. Rohde, A. Manera, Validation of the RELAP5 code for the modeling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility, Nucl. Eng. Des. 243 (2012) 168-175. https://doi.org/10.1016/j.nucengdes.2011.10.053
- S. Jiang, M. Yao, J. Bo, S. Wu, Experimental simulation study on start-up of the 5 MW nuclear heating reactor, Nucl. Eng. Des. 158 (1) (1995) 111-123. https://doi.org/10.1016/0029-5493(95)01020-I
- A. Manera, T.H. van der Hagen, Stability of natural-circulation-cooled boiling water reactors during startup: experimental results, Nucl. Technol. 143 (1) (2003) 77-88. https://doi.org/10.13182/NT03-A3399
- M. Ishii, Thermally Induced Flow Instabilities in Two-phase Mixtures in Thermal Equilibrium, Georgia Institute of Technology, 1971.
- Y. Zhang, G. Su, X. Yang, S. Qiu, Theoretical research on two-phase flow instability in parallel channels, Nucl. Eng. Des. 239 (7) (2009) 1294-1303. https://doi.org/10.1016/j.nucengdes.2009.02.018
- K. Fukuda, T. Kobori, Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol. 16 (2) (1979) 95-108. https://doi.org/10.1080/18811248.1979.9730878
- N. Zuber, Flow excursions and oscillations in boiling, two-phase flow systems with heat addition. Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e, 1967, p. 1071.
- H. Liu, S. Kakac, F. Mayinger, Characteristics of transition boiling and thermal oscillation in an upflow convective boiling system, Exp. Therm. Fluid Sci. 8 (3) (1994) 195-205. https://doi.org/10.1016/0894-1777(94)90048-5
- S.G. Lim, H.C. No, S.W. Lee, H.G. Kim, J. Cheon, J.M. Lee, S.M. Ohk, Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER, Nuclear Engineering and Technology 52 (1) (2020) 37-50. https://doi.org/10.1016/j.net.2019.06.026
- K.M. Kim, D.H. Lee, I.C. Bang, Analysis of natural circulation behaviors and flow instabilities of passive containment cooling system design for advanced PWR using MARS-KS code, Int. J. Heat Mass Tran. 147 (2020), 118982. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118982
- Q. Wang, P. Gao, X. Chen, Z. Wang, Y. Huang, An investigation on flashing-induced natural circulation instabilities based on RELAP5 code, Ann. Nucl. Energy 121 (2018) 210-222. https://doi.org/10.1016/j.anucene.2018.07.035