Acknowledgement
The author would like to acknowledge the support provided by the Deanship of Research at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. Special thanks are due to Dr. Dieter Schardt (GSI) for providing us with the tables of experimental data on depth - dose distributions. Great gratitude is extended to Prof. Saed Dababneh who is no longer with us. His valuable advices and kind notices are deeply thanked.
References
- J. Soltani-Nabipour, A. Khorshidi, F. Shojai, K. Khorami, Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code, Nuclear Engineering And Technology 52 (2020) 2410-2414, https://doi.org/10.1016/j.net.2020.03.010.
- O. Jakel, Medical physics aspects of particle therapy, Radiat. Protect. Dosim. 137 (2009) 156-166, https://doi.org/10.1093/rpd/ncp192.
- O. Jakel, D. Schulz-Ertner, C. Karger, A. Nikoghosyan, J. Debus, Heavy ion therapy: status and perspectives, Technol. Canc. Res. Treat. 2 (2003) 377-387, https://doi.org/10.1177/153303460300200503.
- D. Schulz-Ertner, O. Jakel, W. Schlegel, Radiation therapy with charged particles, Semin. Radiat. Oncol. 16 (2006) 249-259, https://doi.org/10.1016/j.semradonc.2006.04.008.
- W. Bragg, R. Kleeman, On the a particles of radium, and their loss of range in passing through various atoms and molecules, The London, Edinburgh, And Dublin Philosophical Magazine And Journal Of Science 10 (1905) 318-340, https://doi.org/10.1080/14786440509463378.
- J.S. Nabipour, A. Khorshidi, Spectroscopy and optimizing semiconductor detector data under X and g photons using image processing technique, J. Med. Imag. Radiat. Sci. 49 (2) (2018) 194-200, https://doi.org/10.1016/j.jmir.2018.01.004.
- L. Sihver, D. Schardt, T. Kanai, Depth-dose distributions of high-energy carbon, oxygen and neon beams in water, Jpn. J. Appl. Phys. 18 (1998), https://doi.org/10.11323/jjmp1992.18.1_1.
- M. Hultqvist, J. Lillhok, L. Lindborg, I. Gudowska, H. Nikjoo, Nanodosimetry in a 12C ion beam using Monte Carlo simulations, Radiat. Meas. 45 (2010) 1238-1241, https://doi.org/10.1016/j.radmeas.2010.05.033.
- G. Kraft, Tumor therapy with heavy charged particles, Prog. Part. Nucl. Phys. 45 (2000) S473-S544, https://doi.org/10.1016/s0146-6410(00)00112-5.
- G. Kraft, M. Scholz, U. Bechthold, Tumor therapy and track structure, Radiat. Environ. Biophys. 38 (1999) 229-237, https://doi.org/10.1007/s004110050163.
- S. Brons, G. Taucher-Scholz, M. Scholz, G. Kraft, A track structure model for simulation of strand breaks in plasmid DNA after heavy ion irradiation, Radiat. Environ. Biophys. 42 (2003) 63-72, https://doi.org/10.1007/s00411-003-0184-9.
- P. Azimi, A. Movafeghi, Proton therapy in neurosurgery: a historical review and future perspective based on currently available new generation systems, Int. J. Clin. Neurosci. 3 (2) (2016) 59-80, https://doi.org/10.22037/icnj.v3i2.13324.
- S. Malmir, A. Asghar Mowlavi, S. Mohammadi, Enhancement evaluation of energy deposition and secondary particle production in gold nanoparticle aided tumor using proton therapy, Int. J. Canc. Manag. 10 (10) (2017), e10719, https://doi.org/10.5812/ijcm.10719.
- A. Khorshidi, Accelerator-based methods in radio-material 99Mo/99mTc production alternatives by Monte Carlo method: the scientific-expedient considerations in nuclear medicine, J. Multiscale Model. (JMM) 11 (1) (2020) 1930001, https://doi.org/10.1142/S1756973719300016.
- E. Segre, H. Staub, H. Bethe, et al., Experimental Nuclear Physics, first ed., John Wiley & Sons, New York, 1953.
- Jose R. Alonso, Review of ion beam therapy, Present and Future (2000). United States, https://www.osti.gov/servlets/purl/765471.
- E.J. Hall, Radiobiology for the Radiologist, fourth ed., Lippincott Williams & Wilkins, 1993.
- E. Haettner, Experimental Study on Carbon Ion Fragmentation in Water Using GSI Therapy Beams, KTH Royal Institute of Technology in Stockholm, 2006.
- P. Petti, A. Lennox, Hadronic radiotherapy, Annu. Rev. Nucl. Part Sci. 44 (1994) 155-197, https://doi.org/10.1146/annurev.ns.44.120194.001103.
- J. Soltani-Nabipour, M. Popovici, G. Cata-Danil, Residual Nuclei Produced by 290 MeV/u 12C ions beam in a liquid water target, Rom. Rep. Phys. 62 (2010) 37-46. http://194.102.58.21/2010_62_01/art04Soltanidoc.pdf. accessed 9 September 2020.
- I. Pshenichnov, I. Mishustin, W. Greiner, Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit, Phys. Med. Biol. 50 (2005) 5493-5507, https://doi.org/10.1088/0031-9155/50/23/005.
- Geant4 User's Guide. https://geant4.web.cern.ch/support/user_documentation, 2012.
- A. Lechner, V. Ivanchenko, J. Knobloch, Validation of recent Geant4 physics models for application in carbon ion therapy, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2343-2354, https://doi.org/10.1016/j.nimb.2010.04.008.
- Dosimetry and Medical Radiation Physics Section, Absorbed Dose Determination in External Beam Radiotherapy, The International Atomic Energy Agency, Vienna, 2000. http://www-pub.iaea.org/mtcd/publications/pdf/trs398_scr.pdf. accessed 9 September 2020.
- S. Dababneh, E. Al-Nemri, J. Sharaf, Application of Geant4 in routine close geometry gamma spectroscopy for environmental samples, J. Environ. Radioact. 134 (2014) 27-34, https://doi.org/10.1016/j.jenvrad.2014.02.019.
- R Development Core Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
- A. Cuadra-Sanchez, J. Aracil, Finding the optimal Aggregation period, Traffic Anomaly Detection (2015) 11-27, https://doi.org/10.1016/b978-1-78548-012-6.50002-3.
- E. Mocanu, P. Nguyen, M. Gibescu, Deep learning for power system data analysis, Big Data Application In Power Systems (2018) 125-158, https://doi.org/10.1016/b978-0-12-811968-6.00007-3.
- G. Christodoulakis, S. Satchel, The validity of credit risk model validation methods, The Analytics Of Risk Model Validation (2008) 27-43, https://doi.org/10.1016/b978-075068158-2.50006-8.
- R. Woods, Validation of registration accuracy, Handbook Of Medical Image Processing And Analysis (2009) 569-575, https://doi.org/10.1016/b978-012373904-9.50043-x.
- J. Blackledge, Statistical modelling and analysis, Digital Image Processing (2005) 512-540, https://doi.org/10.1533/9780857099464.4.512.
- M. Hultqvist, I. Gudowska, Secondary doses delivered to an anthropomorphic male phantom under prostate irradiation with proton and carbon ion beams, Radiat. Meas. 45 (2010) 1410-1413, https://doi.org/10.1016/j.radmeas.2010.05.020.
- A. Khorshidi, Neutron activator design for 99Mo production yield estimation via lead and water moderators in transmutation's analysis, Instrum. Exp. Tech. 61 (2) (2018) 198-204, https://doi.org/10.1134/S002044121802015X.
- A. Khorshidi, Molybdenum-99 production via lead and bismuth moderators and milli-structure-98Mo samples by the indirect production technique using the Monte Carlo method, Phys. Usp. 62 (9) (2019) 931-940, https://doi.org/10.3367/UFNe.2018.09.038441.
- M. Ashoor, A. Khorshidi, L. Sarkhosh, Appraisal of new density coefficient on integrated-nanoparticles concrete in nuclear protection, Kerntechnik 85 (1) (2020) 9-14, https://doi.org/10.3139/124.190016.
- G. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, New York, 1999, pp. 31-32.
Cited by
- Recent advances in radiation therapy and photodynamic therapy vol.8, pp.4, 2021, https://doi.org/10.1063/5.0060424