DOI QR코드

DOI QR Code

Effect of Fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on Macrophage Activation

산돌배(Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee) 열매의 대식세포 활성화 유도 활성

  • Geum, Na Gyeong (Department of Medicinal Plant Resources, Andong National University) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
  • 금나경 (국립안동대학교 생약자원학과) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2021.05.27
  • Accepted : 2021.06.22
  • Published : 2021.08.01

Abstract

In this study, we investigated in vitro immunostimulatory activity of fruit extracts from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee (PUF) using mouse macrophage RAW264.7 cells. PUF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β, IL-6 and TNF-α, and phagocytic activity in RAW264.7 cells. The inhibition of TLR2 and TLR4 blocked PUF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPKs signaling pathway reduced PUF-mediated production of immunostimulatory factors. From these results, PUF may have immunostimulatory activity via TLR2/4-mediated activation of MAPKs signaling pathway. Therefore, PUF expected to be used as a potential immune-enhancing agent.

이상의 연구 결과로 미루어 볼 때, 산돌배 열매추출물은 대식세포에서 TLR2와 TLR4를 자극하여 MAPKs 신호전달을 활성화하여 NO, iNOS, IL-1𝛽, IL-6 및 TNF-α와 같은 면역증진 인자의 생성을 유도하고, 대식세포의 포식작용을 활성화시키는 것으로 판단된다. 따라서 산돌배 추출물은 대식세포의 활성화를 통해 인체의 면역시스템을 강화할 수 있으므로, 향후 면역 보조제나 면역증진을 위한 기능성 식의약품 개발을 위한 소재로 활용이 가능할 것으로 생각한다.

Keywords

Acknowledgement

본 논문은 산림청(한국임업진흥원) 산림과학기술 연구개발 사업(2021377C10-2123-BD02)과 한국연구재단 이공분야 기초연구사업 중점연구소지원사업(NRF-2018R1A6A1A03024862)의 지원으로 이루어진 결과로 이에 감사드립니다.

References

  1. Alagawany, M., Y.A. Attia, M.R. Farag, S.S. Elnesr, S.A. Nagadi, M.E. Shafi, A.F. Khafaga, H. Ohran, A.A. Alaqil and M.E. Abd El-Hack. 2021. The strategy of boosting the immune system under the COVID-19 pandemic. Front. Vet. Sci. 7:570748. https://doi.org/10.3389/fvets.2020.570748
  2. Duque, G.A. and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491. https://doi.org/10.3389/fimmu.2014.00491
  3. Barbara, J.A., X. Van Ostade and A.F. Lopez. 1996. Tumour necrosis factor-alpha (TNF-α): the good, the bad and potentially very effective. Immunol. Cell Biol. 74:434-443. https://doi.org/10.1038/icb.1996.73
  4. Foley, E. and P.H. O'Farrell. 2003. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Gene Dev. 17:115-125. https://doi.org/10.1101/gad.1018503
  5. Janeway, C.A. Jr. and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  6. Kawasaki, T. and T. Kawai. 2014. Toll-like receptor signaling pathways. Front. Immumol. 5:461.
  7. Kim, B.H., W.J. Lee, B. Sanjel, K. Cho, Y.K. Son, H.Y. Park, S.Y. Kim and W.S. Shim. 2019. Extracts of the leaves of Pyrus ussuriensis Maxim. Alleviate itch sensation via TSLP-dependent manner in mouse models of atopic dermatitis. Physiol. Behav. 210:112624. https://doi.org/10.1016/j.physbeh.2019.112624
  8. Kim, H., T.H. Kim, B. Jeon, M.H. Bang, W.J. Kim, J.W. Park and D.K. Chung. 2020. Evaluation of the physiological activity on the skin and identification of the active ingredient of leaf extract from Sanhyang sandolbae (Pyrus ussuriensis) as a new variety. J. Korean Soc. Food Sci. Nutr. 49(1):35-45. https://doi.org/10.3746/jkfn.2020.49.1.35
  9. Lee, J.C., J.T. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, D. McNulty, M.J. Blumenthal, J.R. Heys, S.W. Landvatter, J.E. Strickler, M.M. McLaughlin, I.R. Siemens, S.M. Fisher, G.P. Livi, J.R. White, J.L. Adams and P.R. Young. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739-746. https://doi.org/10.1038/372739a0
  10. Lee, K.H., J.Y. Cho, H.J. Lee, Y.K. Ma, J. Kwon, S.H. Park, S.H. Lee, J.A. Cho, W.S. Kim, K.H. Park and J.H. Moon. 2011. Hydroxycinnamoylmalic acids and their methyl esters from pear (Pyrus pyrifolia Nakai) fruit peel. J. Agric. Food Chem. 59(18):10124-10128. https://doi.org/10.1021/jf2022868
  11. Li, X., T. Wang, B. Zhou, W. Gao, J. Cao and L. Huang. 2014. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp). Food Chem. 152:531-538. https://doi.org/10.1016/j.foodchem.2013.12.010
  12. Mills, C.D. and K. Ley. 2014. M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun. 6:716-726. https://doi.org/10.1159/000364945
  13. Mills, C.D., L.L. Lenz and K. Ley. 2015. Macrophages at the fork in the road to health or disease. Front. Immunol. 6:59. https://doi.org/10.3389/fimmu.2015.00059
  14. Nathan, C. and M.U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. PNASU. 97:8841-8848. https://doi.org/10.1073/pnas.97.16.8841
  15. Neurath, M.F. 2014. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 15:329-342. https://doi.org/10.1038/nri3661
  16. Nick, J.A., N.J. Avdi, P. Gerwins, G.L. Johnson and G.S. Worthen. 1996. Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J. Immunol. 156:4867-4875.
  17. Qu, J.-H., B. Du, F. Peng, T.-K. Wang and Y.-D. Yang. 2016. Optimisation of triterpenoids extraction from Anli pears (Pyrus ussuriensis Maxim) by pressurised liquid extraction. Qual. Assur. Saf. Crops Foods 8:105-110. https://doi.org/10.3920/QAS2014.0478
  18. Reiling, N., A. Blumenthal, H.D. Flad, M. Ernst and S. Ehlers. 2001. Mycobacteria-induced TNF-alpha and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J. Immunol. 167:3339-3345. https://doi.org/10.4049/jimmunol.167.6.3339
  19. Scheller, J., A. Chalaris, D. Schmidt-Arras and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 1813:878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034
  20. Seillet, C., G.T. Belz and L.A. Mielke. 2014. Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine 70:1-10. https://doi.org/10.1016/j.cyto.2014.06.002
  21. Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33(3):183-193. https://doi.org/10.7732/KJPR.2020.33.3.183
  22. Tosi, M.F. 2005. Innate immune responses to infection. J. Allergy Clin. Immunol. 116(2):241-249. https://doi.org/10.1016/j.jaci.2005.05.036
  23. Toussi, D.N. and P. Massari. 2014. Immune adjuvant effect of molecularly-defined toll-like receptor ligands. Vaccines (Basel) 2(2):323-353. https://doi.org/10.3390/vaccines2020323
  24. Wada, T. and J.M. Penninger. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838-2849. https://doi.org/10.1038/sj.onc.1207556
  25. Wang, Y., Y. Tian, J. Shao, X. Shu, J. Jia, X. Ren and Y. Guan. 2018. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int. J. Biol. Macromol. 108:300-306. https://doi.org/10.1016/j.ijbiomac.2017.12.025
  26. Zhang, C., N. Bai, A. Chang, Z. Zhang, J. Yin, W. Shen, Y. Tian, R. Xiang and C. Liu. 2013. ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes. Cell. Mol. Immunol. 10:84-94. https://doi.org/10.1038/cmi.2012.57