Acknowledgement
The authors gratefully acknowledge the financial support provided by the National Key Research and Development Program of China (Grant No. 2018YFC1504304), the Key Project of the Natural Science Foundation of Tianjin (Grant No. 19JCZDJC39300), and the National Natural Science Foundation of China (Grant No. 51878433).
References
- Amabili, M. (2018), "Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from viscoelasticity and experimental validation", J. Mech. Phys. Solids, 118, 275-292. https://doi.org/10.1016/j.jmps.2018.06.004.
- Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Khazaeli, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Compos. Struct., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239.
- Beards, C.F. (1996), Structural Vibration: Analysis and Damping, Butterworth-Heinemann Elsevier Ltd, Oxford, United Kingdom.
- Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.
- Clarence, W.S. (2005), Vibration and Shock Handbook, CRC Press, Boca Raton, Florida, USA.
- CSI (Computers and Structures, Inc.) (2006), Perform 3D, Nonlinear Analysis and Performance Assessment for 3D Structures, User Guide, Version 4.
- Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
- Dwairi, H.M., Kowalsky, M.J. and Nau, J.M. (2007), "Equivalent damping in support of direct displacement-based design", J. Earthq. Eng., 11(4), 512-530. https://doi.org/10.1080/13632460601033884.
- Feeny, B.F. and Liang, J.W. (1996), "A decrement method for the simultaneous estimation of coulomb and viscous friction", J. Sound Vib., 195(1), 149-154. https://doi.org/10.1006/jsvi.1996.0411.
- Gounaris, G.D., Antonakakis, E. and Papadopoulos, C.A. (2007), "Hysteretic damping of structures vibrating at resonance: An iterative complex eigensolution method based on damping-stress relation", Comput. Struct., 85(23-24), 1858-1868. https://doi.org/10.1016/j.compstruc.2007.02.026.
- Grigoriev, I.S., Meilikhov, E.Z. and Radzig, A.A. (1997), Handbook of Physical Quantities, CRC Press, Boca Raton, Florida, USA.
- Han, W.J., Kim, S.Y., Lee, J.S. and Byun, Y.H. (2019), "Friction behavior of controlled low strength material-soil interface", Geomech. Eng., 18(4), 407-415. https://doi.org/10.12989/gae.2019.18.4.407.
- Huang, Y.L., Richard, S. and Michael, W. (2019), "A damping model for nonlinear dynamic analysis providing uniform damping over a frequency range", Comput. Struct., 212, 101-109. https://doi.org/10.1016/j.compstruc.2018.10.016.
- Ikuo, T., Tatsuo, H., Yoshimichi, A. and Satoshi, F. (1997), "Vibration tests on a full-size suspen-dome structure", Int. J. Space Struct., 12(3-4), 217-224. https://doi.org/10.1177/026635119701200310.
- Jacobsen, L.S. (1930), "Steady forced vibrations as influenced by damping", Trans. ASME-APM, 52(15), 169-181.
- Kareem, A. and Gurley, K. (1996), "Damping in structures: its evaluation and treatment of uncertainty", J. Wind Eng. Ind. Aerod., 59(2-3), 131-157. https://doi.org/10.1016/0167-6105(96)00004-9
- Kwan, W.P. and Billington, S.L. (2003), "Influence of hysteretic behavior on equivalent period and damping of structural systems", J. Struct. Eng.- ASCE, 129(5), 576-585. https://doi.org/10.1061/(asce)0733-9445(2003)129:5(576).
- Liu, T., Zordan, T., Zhang Q. and Briseghella B. (2015), "Equivalent viscous damping of bilinear hysteretic oscillators", J. Struct. Eng. -ASCE, 141(11), 06015002. https://doi.org/10.1061/(asce)st.1943-541x.0001262.
- Mashhadi, J. and Saffari, H. (2016), "Effects of damping ratio on dynamic increase factor in progressive collapse", Steel Compos. Struct., 22(3), 677-690. https://doi.org/10.12989/scs.2016.22.3.677.
- Oden, J.T. and Martins, J.A.C. (1985), "Models and computational methods for dynamic friction phenomena", Comput. Method. Appl. M., 52(1-3), 527-534. https://doi.org/10.1016/0045-7825(85)90009-x.
- Papagiannopoulos, G.A. (2018), "Jacobsen's equivalent damping concept revisited", Soil Dyn. Earthq. Eng., 115, 82-89. https://doi.org/10.1016/j.soildyn.2018.08.001.
- Petrini, L., et.al. (2008), "Experimental verification of viscous damping modeling for inelastic time history analyzes", J. Earthq. Eng., 12(S1), 125-145. https://doi.org/10.1080/13632460801925822.
- Tamura, Y. (2012), "Amplitude dependency of damping in buildings and critical tip drift ratio", Int. J. High-Rise Build., 1(1), 1-13. https://doi.org/10.1061/41000(315)39.
- Teng, J., Zhu, Y.H. and Zhou, F. (2010), "Finite element model updating for large span spatial steel structure considering uncertainties", J. Cent. South Univ. Technol., 17(4), 857-862. https://doi.org/10.1007/s11771-010-0567-4.
- Tzan, S.R. and Pantelides, C.P. (1998), "Active structures considering energy dissipation through damping and plastic yielding", Comput. Struct., 66, 411-433. https://doi.org/10.1016/s0045-7949(97)00079-5.
- Wang, Y.F., Pan, Y.H., Wen, J., Su, L. and Mei, S.Q. (2014), "Influence of some key factors on material damping of steel beams", Struct. Eng. Mech., 49(3), 285-296. https://doi.org/10.12989/sem.2014.49.3.285.
- Woodhouse, J. (1998), "Linear damping models for structural vibration", J. Sound Vib., 215(3), 547-569. https://doi.org/10.1006/jsvi.1998.1709.
- Yang, F.Y., Zhi, X.D. and Fan, F. (2019), "Effect of complex damping on seismic responses of a reticulated dome and shaking table test validation", Thin Wall. Struct., 134, 407-418. https://doi.org/10.1016/j.tws.2018.10.025.
- Zhang, H.D. and Wang, Y.F. (2012), "Energy-based numerical evaluation for seismic performance of a high-rise steel building", Steel Compos. Struct., 13(6), 501-519. https://doi.org/10.12989/scs.2012.13.6.501.
- Zhang, H.D., Zhu, X.Q., Li, Z.X. and Yao, S. (2019), "Displacement-dependent nonlinear damping model in steel buildings with bolted joints", Adv. Struct. Eng., 22(5), 1049-1061. https://doi.org/10.1177/1369433218804321.