DOI QR코드

DOI QR Code

A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates

  • Ghannadpour, S. Amir M. (Faculty of New Technologies Engineering, Shahid Beheshti University) ;
  • Rashidi, Fatemeh (Faculty of New Technologies Engineering, Shahid Beheshti University)
  • 투고 : 2020.07.30
  • 심사 : 2021.07.16
  • 발행 : 2021.08.25

초록

Variable stiffness composite plate can adjust the stiffness properties of the plate in order to satisfy the design requirements of studied problem. In this paper, the effects of different types of boundary conditions, lay-ups, sizes and shapes of geometric initial imperfection on the nonlinear behavior of VAT plates are investigated; these conditions influence the behavior of the plate completely. Moreover, the first-order shear deformation plate theory and Von-Karman assumptions are applied to analyze the effects of fiber lay-up sequences of VAT-laminate under different boundary conditions. Ritz method is also exploited by using Legendre polynomials to approximate the unknown displacement fields of the problem. To yield more accurate results, potential energy integrals are numerically calculated by employing Gauss-Lobatto formulas. Lastly, the system of nonlinear equations is solved by the well-known Newton-Raphson technique. In order to validate the results, finite element analysis is also implemented by the commercial finite element package ABAQUS.

키워드

참고문헌

  1. Bulson, P.S. (1969), The stability of flat plates, Elsevier Publishing Company
  2. Charette, R. and Hyer, M. (1990), "Innovative design of composite structures: The use of curvilinear fiber format in structural design of composites".
  3. Diaconu, C.G. and Weaver, P.M. (2005), "Approximate Solution and Optimum Design of Compression-Loaded, Postbuckled Laminated Composite Plates", AIAA J., 43(4), 906-914. https://doi.org/10.2514/1.10827.
  4. Gao, Y., Xiao, W.S. and Zhu, H. (2019), "On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets", Steel Compos. Struct., 33(2), 261-275. https://doi.org/10.12989/scs.2019.33.2.261.
  5. Ghannadpour, S. and Barekati, M. (2016), "Initial imperfection effects on postbuckling response of laminated plates under end-shortening strain using Chebyshev techniques", Thin-Wall. Struct., 106, 484-494. https://doi.org/10.1016/j.tws.2016.03.028.
  6. Ghannadpour, S. and Barvaj, A.K. (2019), "Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory", Steel Compos. Struct., 33(2), 245-259. https://doi.org/10.12989/scs.2019.33.2.245.
  7. Ghannadpour, S., Kiani, P. and Reddy, J. (2017), "Pseudo spectral method in nonlinear analysis of relatively thick imperfect laminated plates under end-shortening strain", Compos. Struct., 182 694-710. https://doi.org/10.1016/j.compstruct.2017.08.076.
  8. Ghannadpour, S. and Shakeri, M. (2018), "Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression", Latin Am. J. Solid. Struct., 15(4). https://doi.org/10.1590/1679-78254257.
  9. Ghannadpour, S.A.M. and Shakeri, M. (2017), "A new method to investigate the progressive damage of imperfect composite plates under in-plane compressive load", AUT J. Mech. Eng., 1(2), 159-168. 10.22060/mej.2017.12985.5490.
  10. Girish, J. and Ramachandra, L. (2005), "Thermomechanical postbuckling analysis of symmetric and antisymmetric composite plates with imperfections", Compos. Struct., 67(4), 453-460. https://doi.org/10.1016/j.compstruct.2004.02.004.
  11. Gurdal, Z., Tatting, B.F. and Wu, C. (2008), "Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response", Compos. Part A: Appl. Sci. Manufact., 39(5), 911-922. https://doi.org/10.1016/j.compositesa.2007.11.015.
  12. Heidari-Rarani, M. and Kharratzadeh, M. (2019), "Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection", Steel Compos. Struct., 30(4), 305-313. https://doi.org/10.12989/scs.2019.30.4.305.
  13. Hyer, M.W. and Charette, R. (1991), "Use of curvilinear fiber format in composite structure design", AIAA J., 29(6), 1011-1015. https://doi.org/10.2514/3.10697.
  14. Jones, R.M. (1998), Mechanics of composite materials, CRC press
  15. Kabir, H. and Aghdam, M. (2019), "A robust Bezier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams", Compos. Struct., 212, 184-198. https://doi.org/10.1016/j.compstruct.2019.01.041.
  16. Keleshteri, M., Asadi, H. and Wang, Q. (2017), "Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method", Comput. Method. Appl. Mech. Eng., 325 689-710. https://doi.org/10.1016/j.cma.2017.07.036.
  17. Khani, A., IJsselmuiden, S.T., Abdalla, M.M. and Gurdal, Z. (2011), "Design of variable stiffness panels for maximum strength using lamination parameters", Compos. Part B: Eng., 42(3), 546-552. https://doi.org/10.1016/j.compositesb.2010.11.005.
  18. Kuo, C.-M., Takahashi, K. and Chou, T.W. (1988), "Effect of fiber waviness on the nonlinear elastic behavior of flexible composites", J. Compos. Mater., 22(11), 1004-1025. https://doi.org/10.1177/002199838802201101.
  19. Lopes, C.S., Camanho, P.P., Gurdal, Z. and Tatting, B.F. (2007), "Progressive failure analysis of tow-placed, variable-stiffness composite panels", Int. J. Solid Struct., 44(25-26), 8493-8516. https://doi.org/10.1016/j.ijsolstr.2007.06.029.
  20. Lui, T.H. and Lam, S.S.E. (2001), "Finite strip analysis of laminated plates with general initial imperfection under end shortening", Eng. Struct., 23, 673-686. https://doi.org/10.1016/S0141-0296(00)00076-6
  21. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  22. Olmedo, R. and Gurdal, Z. (1993). "Buckling response of laminates with spatially varying fiber orientations", Proceedings of the 34th Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.1993-1567.
  23. Ovesy, H. and Ghannadpour, S. (2006), "Geometric non-linear analysis of imperfect composite laminated plates, under end shortening and pressure loading, using finite strip method", Compos. Struct., 75(1-4), 100-105. https://doi.org/10.1016/j.compstruct.2006.04.005.
  24. Ovesy, H., Ghannadpour, S. and Morada, G. (2005), "Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method", Compos. Struct., 71(3-4), 307-314. https://doi.org/10.1016/j.compstruct.2005.09.030.
  25. Panda, S. and Singh, B. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
  26. Pandey, M. and Sherbourne, A. (1993), "Postbuckling behaviour of optimized rectangular composite laminates", Compos. Struct., 23(1), 27-38. https://doi.org/10.1016/0263-8223(93)90071-W.
  27. Raju, G., Wu, Z., Kim, B.C. and Weaver, P.M. (2012), "Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions", Compos. Struct., 94(9), 2961-2970. https://doi.org/10.1016/j.compstruct.2012.04.002.
  28. Raju, G., Wu, Z. and Weaver, P.M. (2013), "Postbuckling analysis of variable angle tow plates using differential quadrature method", Compos. Struct., 106, 74-84. https://doi.org/10.1016/j.compstruct.2013.05.010.
  29. Reddy, J.N. (2003), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
  30. Reddy, J.N. (2006), Theory and analysis of elastic plates and shells, CRC press
  31. Shen, H.-S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method. Appl. Mech. Eng., 190(40-41), 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4.
  32. Shen, H.-S. and Lin, Z.-Q. (1995), "Thermal post-buckling analysis of imperfect laminated plates", Comput. Struct., 57(3), 533-540. https://doi.org/10.1016/0045-7949(94)00628-G.
  33. Shin, D.K., Griffin Jr, O.H. and Gurdal, Z. (1993), "Postbuckling response of laminated plates under uniaxial compression", Int. J. Nonlinear Mech., 28(1), 95-115. https://doi.org/10.1016/0020-7462(93)90009-A.
  34. Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567. https://doi.org/10.12989/scs.2018.29.4.557.
  35. Tatting, B. and Gurdal, Z. (2001). "Analysis and design of tow-steered variable stiffness composite laminates", American Helicopter Society Hampton Roads Chapter, Structure Specialists' Meeting, Williamsburg, VA.
  36. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method", Compos. Part B: Eng., 81, 196-230. https://doi.org/10.1016/j.compositesb.2015.07.012.
  37. Wu, Z., Raju, G. and Weaver, P. (2012). "Buckling of VAT plates using energy methods", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. https://doi.org/10.2514/6.2012-1463.
  38. Wu, Z., Raju, G. and Weaver, P.M. (2013), "Postbuckling analysis of variable angle tow composite plates", Int. J. Solid. Struct., 50(10), 1770-1780. https://doi.org/10.1016/j.ijsolstr.2013.02.001.
  39. Wu, Z., Weaver, P.M. and Raju, G. (2013), "Postbuckling optimisation of variable angle tow composite plates", Compos. Struct., 103, 34-42. https://doi.org/10.1016/j.compstruct.2013.03.004.
  40. Wu, Z., Weaver, P.M., Raju, G. and Kim, B.C. (2012), "Buckling analysis and optimisation of variable angle tow composite plates", Thin-Wall. Struct., 60, 163-172. https://doi.org/10.1016/j.tws.2012.07.008.