DOI QR코드

DOI QR Code

Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures

  • Rao, Rajani Kant (Academy of Scientific and Innovative Research (AcSIR)) ;
  • Sindu, B.S. (Special and Multifunctional Structures Laboratory, CSIR-Structural Engineering Research Centre) ;
  • Sasmal, Saptarshi (Academy of Scientific and Innovative Research (AcSIR))
  • Received : 2020.02.08
  • Accepted : 2021.05.29
  • Published : 2021.08.25

Abstract

There is a growing need to develop sensors which can be embedded into the structures during the construction stage itself for developing smart structures. It is preferred to develop these kinds of sensors with the material same as that of material used in construction for the sake of compatibility and better capturing the actual state of distress in the structure. Towards this, in this study cement based piezo-resistive sensors are developed with the help of conductive nano-fillers (Carbon Nanotubes (CNTs)). Since the sensors are cement based, and porous in nature, the characteristics of the sensor will vary due to water penetration into the sensor. As the structures with such embedded sensors have to perform for years, understanding the variations in the characteristics of the sensor due to pore structure is very important. In this regard, the conductivity of the sensor is assessed where the effect of dosage of CNTs, functionalization of CNTs, type of electrical conductivity measurement (both DC and AC) and pore water are the parameters. The strain sensitivity of the sensors under cyclic stress is also investigated and reported in the present study. The findings of this study will help in developing continuous health monitoring strategies using highly sensitive embeddable cement-based nanocomposites.

Keywords

Acknowledgement

The contribution from the staff members of SMSL of CSIR-SERC during preparation of specimens and carrying out the experimental studies is acknowledged. The first author would like to thank CSIR-Senior Research Fellowship for the financial support.

References

  1. Blanch, A.J., Lenehan, C.E. and Quinton, J.S. (2010), "Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution", J. Phys. Chem. B, 114(30), 9805-9811. https://doi.org/10.1021/jp104113d
  2. Cao, J. and Chung, D.D.L. (2004), "Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement", Cement Concrete Res., 34(3), 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003
  3. Chen, X. and Wu, S. (2013), "Influence of water-to-cement ratio and curing period on pore structure of cement mortar", Const. Build. Mater., 38, 804-812. https://doi.org/10.1016/j.conbuildmat.2012.09.058
  4. Chen, B., Wu, K. and Yao, W, (2004), "Conductivity of carbon fiber reinforced cement-based composites", Cement Concrete Compos., 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
  5. Chung, D.D.L. (2004), "Electrically conductive cement-based materials", Adv. Cement Res. 16(4), 167-176. https://doi.org/10.1680/adcr.2004.16.4.167
  6. Coppola, L., Buoso, A. and Corazza, F. (2011), "Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures", Appl. Mech. Mater., 82, 118-123. https://doi.org/10.4028/www.scientific.net/AMM.82.118
  7. D'Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A.L. and Kenny, J.M. (2016), "Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications", Cement Concrete Compos., 65, 200-213. https://doi.org/10.1016/j.cemconcomp.2015.11.001
  8. Guemes, A., Fernandez-Lopez, A., Pozo, A.R. and Sierra-Perez, J. (2020), "Structural health monitoring for advanced composite structures: a review", J. Compos. Sci., 4(1), 13 https://doi.org/10.3390/jcs4010013
  9. Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20(44) 445501. https://doi.org/10.1088/0957-4484/20/44/445501
  10. Han, B., Yu, X. and Ou, J. (2010), "Effect of water content on the piezoresistivity of MWNT/cement composites", J. Mater. Sci., 45(14), 3714-3719. https://doi.org/10.1007/s10853-010-4414-7
  11. Han, B., Yu, X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", In: Nanotechnology in Civil Infrastructure, pp. 1-47, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_1
  12. Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509
  13. Hou, T.C. (2008), "Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials", Doctoral dissertation 2008; The University of Michigan, USA. http://hdl.handle.net/2027.42/61606
  14. Jang, S.H., Kawashima, S. and Yin, H. (2016), "Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes", Mater., 9(4), 220. https://doi.org/10.3390/ma9040220
  15. Jiang, S., Zhou, D., Zhang, L., Ouyang, J., Yu, X., Cui, X. and Han, B. (2018), "Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers", Arch. Civ. Mech. Eng., 18(1), 60-68. https://doi.org/10.1016/j.acme.2017.05.010
  16. Kim, G.M., Naeem, F., Kim, H.K. and Lee, H.K. (2016), "Heating and heat-dependent mechanical characteristics of CNTembedded cementitious composites", Compos. Struct., 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
  17. Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003
  18. Lazarenko, A., Vovchenko, L., Prylutskyy, Y., Matzuy, L., Ritter, U. and Scharff, P. (2009), "Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites", Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prufung, Eigenschaften und Anwendungen technischer Werkstoffe, 40(4), 268-272. https://doi.org/10.1002/mawe.200900439
  19. Lezgy-Nazargah, M., Saeidi-Aminabadi, S. and Yousefzadeh, M.A. (2019), "Design and fabrication of a new fiber-cementpiezoelectric composite sensor for measurement of inner stress in concrete structures", Arch. Civil Mech. Eng., 19, 405-416. https://doi.org/10.1016/j.acme.2018.12.007
  20. Li, W. (2013), "The self-sensing, electrical and mechanical properties of the epoxy composites reinforced with carbon nanotubes-micro reinforcement nano/micro hybrids", Ecole Centrale Paris, NNT: 2013ECAP0049 Doctoral dissertation (English).
  21. Li, X. and Li, M. (2019), "Multifunctional self-sensing and ductile cementitious materials", Cement Concrete Res., 123, 105714. https://doi.org/10.1016/j.cemconres.2019.03.008
  22. Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surfacetreated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  23. Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites", Physica Status Solidi (a), 206(12), 2783-2790. https://doi.org/10.1002/pssa.200824310
  24. Luo, J.L., Duan, Z.D., Zhao, T.J. and Li, Q.Y. (2011), "Effect of compressive strain on electrical resistivity of carbon nanotube cement-based composites", Key Eng. Mater., 483, 579-583. https://doi.org/10.4028/www.scientific.net/KEM.483.579
  25. Luo, Y., Chen, Y., Wan, H. P., Yu, F. and Shen, Y. (2021), "Development of laser-based displacement monitoring system and its application to large-scale spatial structures", J. Civil Struct. Health Monitor., 11(2), 381-395. https://doi.org/10.1007/s13349-020-00459-4
  26. Ma, Z., Yun, C. B., Wan, H. P., Shen, Y., Yu, F. and Luo, Y. (2021), "Probabilistic principal component analysis-based anomaly detection for structures with missing data", Struct. Cont. Health Monitor., e2698. https://doi.org/10.1002/stc.2698
  27. Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Tech., 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
  28. Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. Jr. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., Int. J., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
  29. Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multiwalled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Sur. Sci., 257(6), 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030
  30. Noel, A.B., Abdaoui, A., Elfouly, T., Ahmed, M.H., Badawy, A. and Shehata, M.S. (2017), "Structural health monitoring using wireless sensor networks: A comprehensive survey", IEEE Communications Surveys & Tutorials, 19(3), 1403-1423. https://doi.org/10.1109/COMST.2017.2691551
  31. Rao, R. and Sasmal, S. (2019), "Detection of flaw in steel anchorconcrete composite using high-frequency wave characteristics", Steel Compos. Struct., Int. J., 31(4), 341-359. https://doi.org/10.12989/scs.2019.31.4.341
  32. Rao, R., Sindu, B.S. and Sasmal, S. (2020), "Synthesis, design and piezo-resistive characteristics of cementitious smart nanocomposites with different types of functionalized MWCNTs under long cyclic loading", Cement Concrete Compos., 108, 103517. https://doi.org/10.1016/j.cemconcomp.2020.103517
  33. Reales, O.A.M., Jaramillo, Y.P.A., Botero, J.C.O., Delgado, C.A., Quintero, J.H. and Toledo Filho, R.D. (2018), "Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes", Cement Concrete Res., 107, 101-109. https://doi.org/10.1016/j.cemconres.2018.02.020
  34. Rice, J.A., Mechitov, K., Sim, S.-H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr., B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., Int. J., 6(5), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
  35. Rovnanik, P., Kusak, I., Bayer, P., Schmid, P. and Fiala, L. (2019), "Electrical and self-sensing properties of alkali-activated slag composite with graphite filler", Mater., 12(10), 1616. https://doi.org/10.3390/ma12101616
  36. Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471
  37. Sasmal, S., Ravivarman, N. and Sindu, B.S. (2017a), "Synthesis, characterisation and performance of piezo-resistive cementitious nanocomposites", Cement Concrete Compos., 75, 10-21. https://doi.org/10.1016/j.cemconcomp.2016.10.008
  38. Sasmal, S., Ravivarman, N., Sindu, B.S. and Vignesh, K. (2017b), "Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading", Compos. Part A: Appl. Sci. Manufact., 100, 227-243. https://doi.org/10.1016/j.compositesa.2017.05.018
  39. Solgaard, A.O.S., Geiker, M., Edvardsen, C. and Kuter, A. (2014), "Observations on the electrical resistivity of steel fibre reinforced concrete", Mater. Struct., 47(1-2), 335-350. https://doi.org/10.1617/s11527-013-0064-y
  40. Spragg, R., Villani, C., Snyder, K., Bentz, D., Bullard, J.W. and Weiss, J. (2013), "Factors that influence electrical resistivity measurements in cementitious systems", Transp. Res. Rec., 2342(1), 90-98. https://doi.org/10.3141/2342-11
  41. Sun, M., Staszewski, W.J. and Swamy, R.N. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng. https://doi.org/10.1155/2010/724962
  42. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
  43. Tyson, B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. and Grasley, Z. (2011), "Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials", J. Mater. Civil Eng., 23(7), 1028-1035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266
  44. Ubertini, F., Materazzi, A.L., D'Alessandro, A. and Laflamme, S. (2014), "Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors", Eng. Struct., 60, 265-275. https://doi.org/10.1016/j.engstruct.2013.12.036
  45. Wan, H.P., Dong, G.S. and Luo, Y. (2021), "Compressive sensing of wind speed data of large-scale spatial structures with dedicated dictionary using time-shift strategy", Mech. Syst. Signal Process., 157, 107685. https://doi.org/10.1016/j.ymssp.2021.107685
  46. Wang, L. and Aslani, F. (2019), "A review on material design, performance, and practical application of electrically conductive cementitious composites", Const. Build. Mater., 229, 116892. https://doi.org/10.1016/j.conbuildmat.2019.116892
  47. Wen, S. and Chung, D.D.L. (2001), "Effect of stress on the electric polarization in cement", Cement Concrete Res., 31(2), 291-295. https://doi.org/10.1016/S0008-8846(00)00412-9
  48. Yoo, D.Y., You, I., Youn, H. and Lee, S.J. (2018a), "Electrical and piezoresistive properties of cement composites with carbon nanomaterials", J. Compos. Mater., 52(24), 3325-3340. https://doi.org/10.1177/0021998318764809
  49. Yoo, D.Y., You, I., and Lee, S.J. (2018b), "Electrical and piezoresistive sensing capacities of cement paste with multiwalled carbon nanotubes", Arch. Civil Mech. Eng., 18(2), 371-384. https://doi.org/10.1016/j.acme.2017.09.007
  50. Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010
  51. Zhang, L., Ding, S., Han, B., Yu, X. and Ni, Y.Q. (2019), "Effect of water content on the piezoresistive property of smart cementbased materials with carbon nanotube/nanocarbon black composite filler", Compos. Part A: Appl. Sci. Manufact., 119, 8-20. https://doi.org/10.1016/j.compositesa.2019.01.010