Acknowledgement
The contribution from the staff members of SMSL of CSIR-SERC during preparation of specimens and carrying out the experimental studies is acknowledged. The first author would like to thank CSIR-Senior Research Fellowship for the financial support.
References
- Blanch, A.J., Lenehan, C.E. and Quinton, J.S. (2010), "Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution", J. Phys. Chem. B, 114(30), 9805-9811. https://doi.org/10.1021/jp104113d
- Cao, J. and Chung, D.D.L. (2004), "Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement", Cement Concrete Res., 34(3), 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003
- Chen, X. and Wu, S. (2013), "Influence of water-to-cement ratio and curing period on pore structure of cement mortar", Const. Build. Mater., 38, 804-812. https://doi.org/10.1016/j.conbuildmat.2012.09.058
- Chen, B., Wu, K. and Yao, W, (2004), "Conductivity of carbon fiber reinforced cement-based composites", Cement Concrete Compos., 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
- Chung, D.D.L. (2004), "Electrically conductive cement-based materials", Adv. Cement Res. 16(4), 167-176. https://doi.org/10.1680/adcr.2004.16.4.167
- Coppola, L., Buoso, A. and Corazza, F. (2011), "Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures", Appl. Mech. Mater., 82, 118-123. https://doi.org/10.4028/www.scientific.net/AMM.82.118
- D'Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A.L. and Kenny, J.M. (2016), "Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications", Cement Concrete Compos., 65, 200-213. https://doi.org/10.1016/j.cemconcomp.2015.11.001
- Guemes, A., Fernandez-Lopez, A., Pozo, A.R. and Sierra-Perez, J. (2020), "Structural health monitoring for advanced composite structures: a review", J. Compos. Sci., 4(1), 13 https://doi.org/10.3390/jcs4010013
- Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20(44) 445501. https://doi.org/10.1088/0957-4484/20/44/445501
- Han, B., Yu, X. and Ou, J. (2010), "Effect of water content on the piezoresistivity of MWNT/cement composites", J. Mater. Sci., 45(14), 3714-3719. https://doi.org/10.1007/s10853-010-4414-7
- Han, B., Yu, X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", In: Nanotechnology in Civil Infrastructure, pp. 1-47, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_1
- Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509
- Hou, T.C. (2008), "Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials", Doctoral dissertation 2008; The University of Michigan, USA. http://hdl.handle.net/2027.42/61606
- Jang, S.H., Kawashima, S. and Yin, H. (2016), "Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes", Mater., 9(4), 220. https://doi.org/10.3390/ma9040220
- Jiang, S., Zhou, D., Zhang, L., Ouyang, J., Yu, X., Cui, X. and Han, B. (2018), "Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers", Arch. Civ. Mech. Eng., 18(1), 60-68. https://doi.org/10.1016/j.acme.2017.05.010
- Kim, G.M., Naeem, F., Kim, H.K. and Lee, H.K. (2016), "Heating and heat-dependent mechanical characteristics of CNTembedded cementitious composites", Compos. Struct., 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
- Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003
- Lazarenko, A., Vovchenko, L., Prylutskyy, Y., Matzuy, L., Ritter, U. and Scharff, P. (2009), "Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites", Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prufung, Eigenschaften und Anwendungen technischer Werkstoffe, 40(4), 268-272. https://doi.org/10.1002/mawe.200900439
- Lezgy-Nazargah, M., Saeidi-Aminabadi, S. and Yousefzadeh, M.A. (2019), "Design and fabrication of a new fiber-cementpiezoelectric composite sensor for measurement of inner stress in concrete structures", Arch. Civil Mech. Eng., 19, 405-416. https://doi.org/10.1016/j.acme.2018.12.007
- Li, W. (2013), "The self-sensing, electrical and mechanical properties of the epoxy composites reinforced with carbon nanotubes-micro reinforcement nano/micro hybrids", Ecole Centrale Paris, NNT: 2013ECAP0049 Doctoral dissertation (English).
- Li, X. and Li, M. (2019), "Multifunctional self-sensing and ductile cementitious materials", Cement Concrete Res., 123, 105714. https://doi.org/10.1016/j.cemconres.2019.03.008
- Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surfacetreated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
- Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites", Physica Status Solidi (a), 206(12), 2783-2790. https://doi.org/10.1002/pssa.200824310
- Luo, J.L., Duan, Z.D., Zhao, T.J. and Li, Q.Y. (2011), "Effect of compressive strain on electrical resistivity of carbon nanotube cement-based composites", Key Eng. Mater., 483, 579-583. https://doi.org/10.4028/www.scientific.net/KEM.483.579
- Luo, Y., Chen, Y., Wan, H. P., Yu, F. and Shen, Y. (2021), "Development of laser-based displacement monitoring system and its application to large-scale spatial structures", J. Civil Struct. Health Monitor., 11(2), 381-395. https://doi.org/10.1007/s13349-020-00459-4
- Ma, Z., Yun, C. B., Wan, H. P., Shen, Y., Yu, F. and Luo, Y. (2021), "Probabilistic principal component analysis-based anomaly detection for structures with missing data", Struct. Cont. Health Monitor., e2698. https://doi.org/10.1002/stc.2698
- Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Tech., 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
- Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. Jr. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., Int. J., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
- Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multiwalled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Sur. Sci., 257(6), 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030
- Noel, A.B., Abdaoui, A., Elfouly, T., Ahmed, M.H., Badawy, A. and Shehata, M.S. (2017), "Structural health monitoring using wireless sensor networks: A comprehensive survey", IEEE Communications Surveys & Tutorials, 19(3), 1403-1423. https://doi.org/10.1109/COMST.2017.2691551
- Rao, R. and Sasmal, S. (2019), "Detection of flaw in steel anchorconcrete composite using high-frequency wave characteristics", Steel Compos. Struct., Int. J., 31(4), 341-359. https://doi.org/10.12989/scs.2019.31.4.341
- Rao, R., Sindu, B.S. and Sasmal, S. (2020), "Synthesis, design and piezo-resistive characteristics of cementitious smart nanocomposites with different types of functionalized MWCNTs under long cyclic loading", Cement Concrete Compos., 108, 103517. https://doi.org/10.1016/j.cemconcomp.2020.103517
- Reales, O.A.M., Jaramillo, Y.P.A., Botero, J.C.O., Delgado, C.A., Quintero, J.H. and Toledo Filho, R.D. (2018), "Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes", Cement Concrete Res., 107, 101-109. https://doi.org/10.1016/j.cemconres.2018.02.020
- Rice, J.A., Mechitov, K., Sim, S.-H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr., B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., Int. J., 6(5), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
- Rovnanik, P., Kusak, I., Bayer, P., Schmid, P. and Fiala, L. (2019), "Electrical and self-sensing properties of alkali-activated slag composite with graphite filler", Mater., 12(10), 1616. https://doi.org/10.3390/ma12101616
- Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471
- Sasmal, S., Ravivarman, N. and Sindu, B.S. (2017a), "Synthesis, characterisation and performance of piezo-resistive cementitious nanocomposites", Cement Concrete Compos., 75, 10-21. https://doi.org/10.1016/j.cemconcomp.2016.10.008
- Sasmal, S., Ravivarman, N., Sindu, B.S. and Vignesh, K. (2017b), "Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading", Compos. Part A: Appl. Sci. Manufact., 100, 227-243. https://doi.org/10.1016/j.compositesa.2017.05.018
- Solgaard, A.O.S., Geiker, M., Edvardsen, C. and Kuter, A. (2014), "Observations on the electrical resistivity of steel fibre reinforced concrete", Mater. Struct., 47(1-2), 335-350. https://doi.org/10.1617/s11527-013-0064-y
- Spragg, R., Villani, C., Snyder, K., Bentz, D., Bullard, J.W. and Weiss, J. (2013), "Factors that influence electrical resistivity measurements in cementitious systems", Transp. Res. Rec., 2342(1), 90-98. https://doi.org/10.3141/2342-11
- Sun, M., Staszewski, W.J. and Swamy, R.N. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng. https://doi.org/10.1155/2010/724962
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Tyson, B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. and Grasley, Z. (2011), "Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials", J. Mater. Civil Eng., 23(7), 1028-1035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266
- Ubertini, F., Materazzi, A.L., D'Alessandro, A. and Laflamme, S. (2014), "Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors", Eng. Struct., 60, 265-275. https://doi.org/10.1016/j.engstruct.2013.12.036
- Wan, H.P., Dong, G.S. and Luo, Y. (2021), "Compressive sensing of wind speed data of large-scale spatial structures with dedicated dictionary using time-shift strategy", Mech. Syst. Signal Process., 157, 107685. https://doi.org/10.1016/j.ymssp.2021.107685
- Wang, L. and Aslani, F. (2019), "A review on material design, performance, and practical application of electrically conductive cementitious composites", Const. Build. Mater., 229, 116892. https://doi.org/10.1016/j.conbuildmat.2019.116892
- Wen, S. and Chung, D.D.L. (2001), "Effect of stress on the electric polarization in cement", Cement Concrete Res., 31(2), 291-295. https://doi.org/10.1016/S0008-8846(00)00412-9
- Yoo, D.Y., You, I., Youn, H. and Lee, S.J. (2018a), "Electrical and piezoresistive properties of cement composites with carbon nanomaterials", J. Compos. Mater., 52(24), 3325-3340. https://doi.org/10.1177/0021998318764809
- Yoo, D.Y., You, I., and Lee, S.J. (2018b), "Electrical and piezoresistive sensing capacities of cement paste with multiwalled carbon nanotubes", Arch. Civil Mech. Eng., 18(2), 371-384. https://doi.org/10.1016/j.acme.2017.09.007
- Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010
- Zhang, L., Ding, S., Han, B., Yu, X. and Ni, Y.Q. (2019), "Effect of water content on the piezoresistive property of smart cementbased materials with carbon nanotube/nanocarbon black composite filler", Compos. Part A: Appl. Sci. Manufact., 119, 8-20. https://doi.org/10.1016/j.compositesa.2019.01.010