DOI QR코드

DOI QR Code

Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller

  • Soleimani-Javid, Zeinab (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Amir, Saeed (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Maraghi, Zahra Khoddami (Mechanical Engineering Department, Engineering Faculty, Mahallat Institute of Higher Education)
  • Received : 2020.02.09
  • Accepted : 2021.04.06
  • Published : 2021.08.25

Abstract

Free vibration analysis of a sandwich beam with honeycomb core and piezoelectric face sheets, which is rested on the viscoelastic foundation is investigated. The thermal environment and the electric field are applied to this structure. Also, it is affected by the proportional-derivative (PD) controller. The amount of gain in this controller can affects the vibration frequency. The displacement components are expressed by improved high-order sandwich panel theory (IHSAPT) that considers continuity conditions for transverse shear stress at the interfaces and the zero transverse shear stresses conditions on the upper and lower surfaces of the beam and core flexibility. The motion equations are derived and solved by Hamilton's principle and Navier's method, respectively. This paper examines the effects of various parameters, such as the internal aspect ratio and the cell angle/thickness of the honeycomb core, temperature variations, viscoelastic environment, electric load, and control gain on its natural frequencies. The results show when the honeycomb core's to face sheet's thickness ratio increases, the beam dimensionless frequency increases, too. Also, by increasing the internal aspect ratio of honeycomb core, the frequency of sandwich beam decreases. The results of this study can be used to vibration control in aerospace engineering and constructions.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study.

References

  1. Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Technol., 24(2), 1227-1245. https://doi.org/10.1007/s00542-017-3492-8
  2. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech., A/Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
  3. Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 22(7), 2186-2209. https://doi.org/10.1177/1099636218795385
  4. Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019), "Sizedependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(9), 1-21. https://doi.org/10.1002/zamm.201800334
  5. Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020a), "Free vibration analysis of magneto-rheological smart annular threelayered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., Int. J., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581
  6. Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020b), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203
  7. Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
  8. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007
  9. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097
  10. Arshid, E., Amir, S. and Loghman, A. (2020a), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027
  11. Arshid, E., Amir, S. and Loghman, A. (2020b), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656
  12. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x
  13. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/J.TWS.2016.05.025
  14. Cheng, S., Qiao, P., Chen, F., Fan, W. and Zhu, Z. (2016), "Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory", J. Sandw. Struct. Mater., 18(2), 242-260. https://doi.org/10.1177/1099636215619841
  15. Dariushi, S. and Sadighi, M. (2015), "Analysis of composite sandwich beam with enhanced nonlinear high order sandwich panel theory", Modares Mech. Eng., 14(16), 1-8.
  16. Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst, Int. J., 20(3), 351-368. https://doi.org/10.12989/sss.2017.20.3.351
  17. Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
  18. Ezzat, M.A., El Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539
  19. Fallah, N. and Ebrahimnejad, M. (2014), "Finite volume analysis of adaptive beams with piezoelectric sensors and actuators", Appl. Mathe. Modell., 38(2), 722-737. https://doi.org/10.1016/j.apm.2013.07.004
  20. Frostig, Y. and Thomsen, O.T. (2004), "High-order free vibration of sandwich panels with a flexible core", Int. J. Solids Struct., 41, 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051
  21. Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
  22. Fu, M. and Yin, J. (1999), "Equivalent elastic parameters of the honeycomb core", Acta Mechanica Sinica, 15(1), 113-118.
  23. Fu, Y., Wang, J. and Mao, Y. (2012), "Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Mathe. Modell., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059
  24. Ghorbanpour Arani, A., Jafari, G.S. and Kolahchi, R. (2016a), "Vibration analysis of nanocomposite microplates integrated with sensor and actuator layers using surface SSDPT", 39(6), 1-14. https://doi.org/10.1002/pc.24150
  25. Ghorbanpour Arani, A., Arani, H.K. and Maraghi, Z.K. (2016b), "Vibration analysis of sandwich composite micro-plate under electro-magneto-mechanical loadings", Appl. Mathe. Modell., 40(23-24), 10596-10615. https://doi.org/10.1016/j.apm.2016.07.033
  26. Ghorbanpour Arani, A., BabaAkbar Zarei, H. and Haghparast, E. (2018), "Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally gradedpiezoelectric nanocomposite face sheets", J. Vib. Control, 24(21), 17-21. https://doi.org/10.1177/1077546317747501
  27. Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst, Int. J., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441
  28. Hong, C.C. (2013), "Thermal vibration of magnetostrictive functionally graded material shells", Eur. J. Mech. A/Solids, 40, 114-122. https://doi.org/10.1016/j.euromechsol.2013.01.010
  29. Jedari Salami, S., Dariushi, S., Sadighi, M. and Shakeri, M. (2016), "An advanced high-order theory for bending analysis of moderately thick faced sandwich beams", Eur. J. Mech. A/Solids, 56, 1-11. https://doi.org/10.1016/j.euromechsol.2015.10.003
  30. Khalili, S.M.R., Kheirikhah, M.M. and Fard, K.M. (2013), "Biaxial wrinkling analysis of composite-faced sandwich plates with soft core using improved high-order theory", Eur. J. Mech. A/Solids, 43, 68-77. https://doi.org/10.1016/j.euromechsol.2013.08.002
  31. Kheirikhah, M.M., Khalili, S.M.R. and Fard, K.M. (2012a), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Eur. J. Mech. A/Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
  32. Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012b), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., Int. J., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015
  33. Lorna, J. and Gibson, M.F.A. (1989), "Cellular solids", J. Biomech. https://doi.org/10.1016/0021-9290(89)90056-0
  34. Malekzadeh, K., Khalili, M.R. and Mittal, R.K. (2005), "Local and global damped vibrations of plates with a viscoelastic soft flexible core: An improved high-order approach", J. Sandw. Struct. Mater., 7(5), 431-456. https://doi.org/10.1177/1099636205053748
  35. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
  36. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
  37. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2016), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425
  38. Moradi Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad-Taheri, M. (2016), "Static and free vibration analyses of functionally graded nano-composite plates reinforced by wavy carbon nanotubes resting on a Pasternak elastic foundation", Mech. Adv. Compos. Struct., 3, 123-135. https://doi.org/10.22075/macs.2016.474
  39. Nezami, M. and Gholami, B. (2015), "Active flutter control of a supersonic honeycomb sandwich beam resting on elastic foundation with piezoelectric sensor/actuator pair", Int. J. Struct. Stabil. Dyn., 15(3), p. 1450052. https://doi.org/10.1142/s0219455414500527
  40. Nguyen, H.X., Nguyen, T.N., Bordas, S.P.A. and Vo, T.P. (2016), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Methods Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002
  41. Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024
  42. Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Methods Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011
  43. Phung-Van, P., Lorenzis, L. De, Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Computat. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
  44. Sakar, G. and Bolat, F.C. (2015), "The free vibration analysis of honeycomb sandwich beam using 3D and continuum model", Int. J. Mech. Aerosp. Indust. Mechatron. Manuf. Eng., 9(6), 1077-1081.
  45. Torabi, K., Afshari, H. and Aboutalebi, F.H. (2019), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sandw. Struct. Mater., 21(8), 2887-2920. https://doi.org/10.1177/1099636217728746
  46. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
  47. Xie, K., Wang, Y., Fan, X. and Fu, T. (2019), "Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories", Appl. Mathe. Modell., 77, 1860-1880. https://doi.org/10.1016/j.apm.2019.09.024
  48. Yiqi, M. and Yiming, F. (2010), "Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate", J. Sound Vib., 329(11), 2015-2028. https://doi.org/10.1016/j.jsv.2010.01.005
  49. Yongqiang, L. and Dawei, Z. (2009), "Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy's third-order plate theory", Compos. Struct., 88(1), 33-39. https://doi.org/10.1016/j.compstruct.2008.03.033
  50. Yue, Y.M., Xu, K.Y. and Chen, T. (2016), "A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects", Compos. Struct., 136, 278-286. https://doi.org/10.1016/j.compstruct.2015.09.046
  51. Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycombcorrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045
  52. Zhang, R., Ni, Y.Q., Duan, Y. and Ko, J.M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553