DOI QR코드

DOI QR Code

Modifications on F2MC tubes as passive tunable vibration absorbers

  • Muhammad, Shiren O. (Department of Mechanical and Mechatronics Engineering, Salahaddin University - Erbil) ;
  • Hussain, Nazhad A. (Department of Mechanical and Mechatronics Engineering, Salahaddin University - Erbil)
  • Received : 2019.08.15
  • Accepted : 2021.04.11
  • Published : 2021.08.25

Abstract

This paper presents new parameters for damping improvement in F2MC tubes performance as tunable vibration absorbers. They offer very good performance with environments having susceptibility to high frequency vibration noise. This study highlights the behavior of changing some parameters of F2MC tubes which never have been studied before. These parameters include thickness ratio between each two respective layers and fluid type that the tubes are filled with. In this paper the beam governing equations with the tube's stress analyses equations are solved for finding the combined system's response by MATLAB® software function solvers. To ensure accuracy of modifications, validations have been proposed by performing illustrative examples and comparing the results with the existing data available in literature. The results showed improvements of F2MC tubes performance 20% over previous studies achievements by studying the thickness ratio, and another 12.82% can be added by using glycerin instead of water under the same conditions. Finally, the reduction of 34.34 dB in first mode amplitude of vibration was achieved in the beam's frequency response function plot.

Keywords

References

  1. Bakaiyan, H., Hosseini, H. and Ameri, E. (2009), "Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations", Compos. Struct., 88, 532-541. https://doi.org/10.1016/j.compstruct.2008.05.017
  2. Boresi, A.P., Schmidt, R.J. and Sidebottom, O.M. (1993), Advanced Mechanics of Materials, John Willey & Sons Inc., USA.
  3. Casas-Ramos, M.A. and Sandoval-Romero, G.E. (2017), "Cantilever beam vibration sensor based on the axial property of fiber Bragg grating", Smart Struct. Syst., Int. J., 19(6), 625-631. https://doi.org/10.12989/sss.2017.19.6.625
  4. Chen, S.S., Wambsganss, M.T. and Jendrzejczyk, J.A. (1976), "Added mass and damping of a vibrating rod in confined viscous fluids", J. Appl. Mech., 43, 325-329. https://doi.org/10.1115/1.3423833
  5. Chen, Y., Sun, J., Liu, Y. and Leng, J. (2012), "Experiment and analysis of fluidic flexible matrix composite (F2MC) tube", J. Intell. Mater. Syst. Struct., 23(3), 279-290. https://doi.org/10.1177/1045389X11420591
  6. Dalrymple, R.A., Kirby, J.T. and Hwang, P.A. (1984), "Wave diffraction due to areas of energy dissipation", J. Waterway Port Coast. Ocean Eng., 110, 67-69. https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67)
  7. Gere, J.M. (2004), Mechanics of Materials, Thomson Brooks/Cole.
  8. Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421
  9. Gholizadeh, H., Burton, R. and Schoenau, G. (2011), "Fluid bulk modulus: a literature survey", Int. J. Fluid Power, 12, 5-15. https://doi.org/10.1080/14399776.2011.10781033
  10. Itoh, T., Shimomura, T. and Okubo, H. (2011), "Semi-Active Vibration Control of Smart Structures with Sliding Mode Control", J. Syst. Des. Dyn., 5, 716-726. https://doi.org/10.1299/jsdd.5.716
  11. Kirn, J., Lorkowski, T. and Baier, H. (2011), "Development of flexible matrix composites (FMC) for fluidic actuators in morphing systems", Int. J. Struct. Integr., 2, 458-473. https://doi.org/10.1108/17579861111183948
  12. Krott, M.J., Miura, K., LaBarge, S., Rahn, C., Smith, E.C. and Romano, P.Q. (2015), "Tube compliance effects on fluidic flexible matrix composite devices for rotorcraft vibration control", Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA.
  13. Kurczewski, N.A., Scarborough III, L.H., Rahn, C.D. and Smith, E.C. (2012), "Coupled Fluidic Vibration Isolators for Rotorcraft Pitch Link Loads Reduction", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, pp. 281-281. https://doi.org/10.1115/DETC2012-70174
  14. Lekhnitskii, S.G. (1977), Theory of Elasticity of an Anisotropic body, Moscow: Mir Publishers.
  15. Liu, B., Wang, Y.R. and Feng, H.H. (2013), "A Design Method of Position Schemes for Particle Dampers Applied to a Flywheel", Appl. Mech. Mater., 482, 163-168. https://doi.org/10.4028/www.scientific.net/AMM.482.163
  16. Loktionov, A.P. (2017), "A measuring system for determination of a cantilever beam support moment", Smart Structures and Systems, 19(4), 431-439. https://doi.org/10.12989/sss.2017.19.4.431
  17. Lotfi-Gaskarimahalle, A., Shan, Y., Li, S., Rahn, C.D., Bakis, C.E. and Wang, K.W. (2008), "Stiffness shaping for zero vibration fluidic flexible matrix composites", Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott, MA, USA. https://doi.org/10.1115/SMASIS2008-501
  18. Lotfi-Gaskarimahalle, A., Scarborough III, L.H., Rahn, C.D. and Smith, E.C. (2009), "Fluidic composite tuned vibration absorbers", Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, CA, USA. https://doi.org/10.1115/SMASIS2009-1349
  19. Miller, R.R. (1965), "The effects of frequency and amplitude of oscillation on the hydrodynamic masses of irregular shaped bodies", University of Rhode Island.
  20. Miura, K., Krott, M., Smith, E., Rahn, C.D. and Romano, P. (2015), "Experimental validation of Tailboom vibration control using fluidic flexible matrix composite tubes", Proceedings of AHS 71st Annual Forum of the American Helicopter Society, Virginia Beach, CA, USA, pp. 1252-1260.
  21. Nakahara, T. and Fujimoto, T. (2011), "Energy regenerative active vibration control of cantilever beam using piezoelectric actuator and class d amplifier", J. Syst. Des. Dy., 5, 737-751. https://doi.org/10.1299/jsdd.5.737
  22. Oueini, S.S., Nayfeh, A.H. and Pratt, J.R. (1998), "A nonlinear vibration absorber for flexible structures", Nonlinear Dyn., 15, 259-282. https://doi.org/10.1023/A:1008250524547
  23. Philen, M. (2008), "Sliding mode control of variable modulus structures based upon fluidic flexible matrix composites", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, Schaumburg, IL, USA, pp. 1-12. https://doi.org/10.2514/6.2008-2127
  24. Philen, M. (2010), "Tunable modulus structures utilizing fluidic flexible matrix composites: analytical and experimental investigations", Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, pp. 2663-2663. https://doi.org/10.2514/6.2010-2663
  25. Philen, M. (2012), "Fluidic flexible matrix composite semi-active vibration isolation mounts", J. Intell. Mater. Syst. Struct., 23, 353-363. https://doi.org/10.1177/1045389X11421823
  26. Philen, M., Shan, Y., Bakis, C., Wang, K.W. and Rahn, C. (2006), "Variable stiffness adaptive structures utilizing hydraulically pressurized flexible matrix composites with valve control", Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA, pp. 1-11. https://doi.org/10.2514/6.2006-2134
  27. Philen, M.K., Shan, Y., Prakash, P., Wang, K.W., Rahn, C.D., Zydney, A.L. and Bakis, C.E. (2007), "Fibrillar network adaptive structure with ion-transport actuation", J. Intell. Mater. Syst. Struct., 18, 323-334. https://doi.org/10.1177/1045389X06066097tions
  28. Roberson, R.E. (1952), "Synthesis of a nonlinear dynamic vibration absorber", J. Franklin Inst., 254, 205-220. https://doi.org/10.1016/0016-0032(52)90457-2
  29. Scarborough, L.H. (2014), "Dynamics of fluidic devices with applications to rotor pitch links", Dissertation; Pennsylvania State University, University Park, PA, USA.
  30. Shan, Y., Philen, M.P., Bakis, C.E., Wang, K.W. and Rahn, C.D. (2006), "Nonlinear-elastic finite axisymmetric deformation of flexible matrix composite membranes under internal pressure and axial force", Compos. Sci. Technol., 66, 3053-3063. https://doi.org/10.1016/j.compscitech.2006.01.002
  31. Shan, Y., Philen, M., Lotfi, A., Li, S., Bakis, C.E., Rahn, C.D. and Wang, K.W. (2009), "Variable stiffness structures utilizing fluidic flexible matrix composites", J. Intell. Mater. Syst. Struct., 20, 443-456. https://doi.org/10.1177/1045389X08095270
  32. Starosvetsky, Y. and Gendelman, O.V. (2008), "Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber", Nonlinear Dyn., 51, 47-57. https://doi.org/10.1007/s11071-006-9168-z
  33. Sun, C.T. and Li, S. (1988), "Three-dimensional effective elastic constants for thick laminates", J. Compos. Mater., 22, 629-639. https://doi.org/10.1177/002199838802200703
  34. Takacs, G., Batista, G., Gulan, M. and Rohal'-Ilkiv, B. (2016), "Embedded explicit model predictive vibration control", Mechatronics, 36, 54-62. https://doi.org/10.1016/j.mechatronics.2016.04.008
  35. Tanaka, H. and Takahara, S. (1981), "Fluid elastic vibration of tube array in cross flow", J. Sound Vib., 77, 19-37. https://doi.org/10.1016/S0022-460X(81)80005-3
  36. Temperley, H.N.V. and Trevena, D.H. (1978), Liquids and their Properties: A Molecular and Macroscopic Treatise with Applications, Bookbarn International, Ellis Horwood Ltd., Bristol, SOM, UK.
  37. Usharani, R., Uma, G., Umapathy, M. and Choi, S.B. (2017), "A new broadband energy harvester using propped cantilever beam with variable overhang", Smart Struct. Syst., Int. J., 19(5), 567-576. https://doi.org/10.12989/sss.2017.19.5.567
  38. Viguie, R. and Kerschen, G. (2009), "Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology", J. Sound Vib., 326, 780-793. https://doi.org/10.1016/j.jsv.2009.05.023
  39. Wang, X. and Shi, Z. (2015), "Unified solutions for piezoelectric bilayer cantilevers and solution modifications", Smart Struct. Syst., Int. J., 16(5), 759-780. https://doi.org/10.12989/sss.2015.16.5.759
  40. Yun, S.K., Yoon, S.S., Kang, S. and Kim, M. (2008), "Design and Vibration Control of Safe Robot Arm with MR-Based Passive Compliant Joint", J. Syst. Des. Dyn., 2, 475-484. https://doi.org/10.1299/jsdd.2.475
  41. Zhang, Z., Philen, M. and Neu, W. (2010), "A biologically inspired artificial fish using flexible matrix composite actuators: Analysis and experiment", Smart Mater. Struct., 19, 1-11. https://doi.org/10.1088/0964-1726/19/9/094017
  42. Zhao, Y.Y. and Xu, J. (2007), "Effects of delayed feedback control on nonlinear vibration absorber system", J. Sound Vib., 308, 212-230. https://doi.org/10.1016/j.jsv.2007.07.041
  43. Zhu, B., Rahn, C.D. and Bakis, C.E. (2011), "Tailored fluidic composites for stiffness or volume change", Proceedings of Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Scottsdale, AZ, USA, pp. 607-612. https://doi.org/10.1115/SMASIS2011-4962
  44. Zhu, B., Rahn, C.D. and Bakis, C.E. (2013a), "Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites", Proceedings of Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, March. https://doi.org/10.1117/12.2014763
  45. Zhu, B., Rahn, C.D. and Bakis, C.E. (2013b), "Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites", Procedings of Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, March. https://doi.org/10.1117/12.2014763
  46. Zhu, B., Krott, M.J., Rahn, C.D. and Bakis, C.E. (2014a), "Experimental characterization of a cantilever beam with a fluidic flexible matrix composite vibration treatment", Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Buffalo, New York, USA. https://doi.org/10.1115/DETC2014-34966
  47. Zhu, B., Rahn, C.D. and Bakis, C.E. (2014b), "Fluidic flexible matrix composite vibration absorber for a cantilever beam", J. Vib. Acoust., 137(2), 021005. https://doi.org/10.1115/1.4029002
  48. Zhu, B., Rahn, C.D. and Bakis, C.E. (2015), "Fluidic flexible matrix composite damping treatment for a cantilever beam", J. Sound Vib., 340, 80-94. https://doi.org/10.1016/j.jsv.2014.11.042