DOI QR코드

DOI QR Code

Machine learning-based prediction and performance study of transparent soil properties

  • Wang, Bo (School of Civil Engineering, Chongqing University) ;
  • Hou, Hengjun (School of Civil Engineering, Chongqing University) ;
  • Zhu, Zhengwei (School of Civil Engineering, Chongqing University) ;
  • Xiao, Wang (Shaoguan Construction Quality and Safety Center)
  • 투고 : 2020.11.07
  • 심사 : 2021.03.24
  • 발행 : 2021.08.25

초록

An indispensable process of geotechnical modeling with transparent soils involves analyzing images and soil property simulations. This study proposes an objective framework for quantitative analysis of the influential mechanism of three key factors, namely, different aggregate proportions (DAP), solvent ratio (SR), and solute solution ratio (SSR) on transparent soils' transparency and shear strength. 125 groups of transparent soil samples considering these three factors were prepared to investigate their impact on transparency and shear strength through Elastic Net regression. Spearman correlation analysis was performed for transparency and shear strength. Furthermore, by comparing the performance of XGBoost, GBDT, Random Forest, and SVR after hyperparameter tuning in predicting transparency and shear strength, XGBoost proved to be the optimal machine learning model with the lowest MSE of 0.0048 and 0.0306 and was innovatively adopted to analyze how various factors affect the transparency and shear strength, thus enhancing the interpretability of machine learning. A ranking system, according to the importance scores of XGBoost, shows that SSR was the most important factor affecting both shear strength and transparency of transparent soils, with importance scores being 0.45 and 0.57, respectively. Our study may shed light on the preparation and performance study of transparent soils.

키워드

과제정보

This work is supported by the Fundamental Research Funds for the Central University (No. 2018CDYJSY0055), the National Natural Science Foundation of China (No. 51478066) and Chongqing Natural Science Foundation of China (No. cstc2018jscx-msybX0271).

참고문헌

  1. Abedini, M. and Zhang, C. (2021), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473
  2. Bai, B., Guo, Z., Zhou, C., Zhang, W. and Zhang, J. (2021), "Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering", Inform. Sci., 546, 42-59. https://doi.org/10.1016/j.ins.2020.07.069
  3. Bhattacharya, S., Maddikunta, P.K.R., Kaluri, R., Singh, S., Gadekallu, T.R., Alazab, M. and Tariq, U. (2020), "A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU", Electronics, 9(2), 219. https://doi.org/10.3390/electronics9020219
  4. Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  5. Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37, 701-712. https://doi.org/10.1007/s00366-019-00850-w
  6. Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413
  7. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y. and Cho, H. (2015), "Xgboost: extreme gradient boosting", R package version 0.4-2 1-4.
  8. Chen, H., Qiao, H., Xu, L., Feng, Q. and Cai, K. (2019), "A fuzzy optimization strategy for the implementation of RBF LSSVR model in vis-NIR analysis of pomelo maturity", IEEE Transact. Indust. Inform., 15(11), 5971-5979. https://doi.org/10.1109/TII.2019.2933582
  9. Chou, J.S., Yang, K.H. and Lin, J.Y. (2016), "Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods", J. Comput. Civil Eng., 30(6), 04016036. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000595
  10. Das, S., Samui, P., Khan, S. and Sivakugan, N. (2011), "Machine learning techniques applied to prediction of residual strength of clay", Open Geosciences, 3(4), 449-461. https://doi.org/10.2478/s13533-011-0043-1
  11. Delicado, P. and Smrekar, M. (2009), "Measuring non-linear dependence for two random variables distributed along a curve", Statist. Comput., 19(3), 255. https://doi.org/10.1007/s11222-008-9090-y
  12. Ding, L., Huang, L., Li, S., Gao, H., Deng, H., Li, Y. and Liu, G. (2020), "Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain", IEEE Transact. Robotics, 36(3), 894-909. https://doi.org/10.1109/TRO.2020.2981822
  13. Ezzein, F.M. and Bathurst, R.J. (2011), "A transparent sand for geotechnical laboratory modeling", Geotech. Test. J., 34(6), 590-601. https://doi.org/10.1520/GTJ103808
  14. Ezzein, F.M. and Bathurst, R.J. (2014), "A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil", Geotext. Geomembr., 42(3), 246-255. https://doi.org/10.1016/j.geotexmem.2014.04.003
  15. Friedman, J.H. (2001), "Greedy function approximation: a gradient boosting machine", Annals of statistics, 1189-1232.
  16. Fu, X. and Yang, Y. (2020), "Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks", Reliabil. Eng. Syst. Safety, 197, 106815. https://doi.org/10.1016/j.ress.2020.106815
  17. Gadekallu, T.R., Rajput, D.S., Reddy, M.P.K., Lakshmanna, K., Bhattacharya, S., Singh, S., Jolfaei, A. and Alazab, M. (2020), "A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU", J. Real-Time Image Process., 1-14. https://doi.org/10.1007/s11554-020-00987-8
  18. He, H., Bai, Y., Garcia, E.A. and Li, S. (2008), "ADASYN: Adaptive synthetic sampling approach for imbalanced learning", Proceedings of 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, June, pp. 1322-1328. https://doi.org/10.1109/IJCNN.2008.4633969
  19. He, S., Guo, F. and Zou, Q. (2020), "MRMD2. 0: a python tool for machine learning with feature ranking and reduction", Current Bioinformat., 15(10), 1213-1221. https://doi.org/10.2174/1574893615999200503030350
  20. Iskander, M. (2010), Modelling with transparent soils: Visualizing soil structure interaction and multi phase flow, non-intrusively, Springer Science & Business Media.
  21. Iskander, M.G., Liu, J. and Sadek, S. (2002), "Transparent amorphous silica to model clay", J. Geotech. Geoenviron. Eng., 128(3), 262-273. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(262)
  22. Ju, Y., Shen, T. and Wang, D. (2020), "Bonding behavior between reactive powder concrete and normal strength concrete", Constr. Build. Mater., 242, 118024. https://doi.org/10.1016/j.conbuildmat.2020.118024
  23. Kanevski, M., Pozdnukhov, A. and Timonin, V. (2008), "Machine learning algorithms for geospatial data. Applications and software tools", Proceedings of the 4th International Congress on Environmental Modelling and Software, Barcelona, Catalonia, Spain, July.
  24. Kanungo, D.P., Sharma, S. and Pain, A. (2014), "Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters", Frontiers Earth Sci., 8(3), 439-456. https://doi.org/10.1007/s11707-014-0416-0
  25. Kiran, S., Lal, B. and Tripathy, S. (2016), "Shear strength prediction of soil based on probabilistic neural network", Indian J. Sci. Technol., 9(41). https://doi.org/10.17485/ijst/2016/v9i41/99188
  26. Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002
  27. Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE Transact. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877
  28. Li, B.H., Liu, Y., Zhang, A.M., Wang, W.H. and Wan, S. (2020a), "A survey on blocking technology of entity resolution", J. Comput. Sci. Technol., 35(4), 769-793. https://doi.org/10.1007/s11390-020-0350-4
  29. Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020b), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring", Int. J. Struct. Stabil. Dyn., 20(06), 2040011. https://doi.org/10.1142/S0219455420400118
  30. Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4
  31. Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018), "Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil", Chemosphere, 194, 495-503. https://doi.org/10.1016/j.chemosphere.2017.12.025
  32. Lo, H.C.J., Tabe, K., Iskander, M. and Yoon, S.H. (2010), "A transparent water-based polymer for simulating multiphase flow", Geotech. Test. J., 33(1), 1-13. https://doi.org/10.1520/GTJ102375
  33. Lv, Z. and Qiao, L. (2020), "Deep belief network and linear perceptron based cognitive computing for collaborative robots", Appl. Soft Comput., 92, 106300. https://doi.org/10.1016/j.asoc.2020.106300
  34. Lv, X., Li, N., Xu, X. and Yang, Y. (2020), "Understanding the emergence and development of online travel agencies: a dynamic evaluation and simulation approach", Internet Res., 30(6), 1783-1810. https://doi.org/10.1108/INTR-11-2019-0464
  35. Ma, H.J. and Xu, L.X. (2020), "Decentralized adaptive faulttolerant control for a class of strong interconnected nonlinear systems via graph theory", IEEE Transact. Automatic Control, 66(7), 3227-3234. https://doi.org/10.1109/TAC.2020.3014292
  36. Ma, H.J. and Yang, G.H. (2015), "Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections", IEEE Transact. Automatic Control, 61(11), 3240-3255. https://doi.org/10.1109/TAC.2015.2507864
  37. Ma, H.J., Xu, L.X. and Yang, G.H. (2019), "Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems", IEEE Transact. Cybernetics, 51(4), 1913-1928. https://doi.org/10.1109/TCYB.2018.2889679
  38. Ma, H.J., Yang, G.H. and Chen, T. (2020), "Event-triggered optimal dynamic formation of heterogeneous affine nonlinear multi-agent systems", IEEE Transact. Automatic Control, 66(2), 497-512. https://doi.org/10.1109/TAC.2020.2983108
  39. Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M. and Webster, S. (2000), "An investigation of machine learning based prediction systems", J. Syst. Software, 53(1), 23-29. https://doi.org/10.1016/S0164-1212(00)00005-4
  40. Melucci, M. (2009), "Weighted rank correlation in information retrieval evaluation", In: Asia Information Retrieval Symposium, pp. 75-86. https://doi.org/10.1007/978-3-642-04769-5_7
  41. Moavenian, M.H., Nazem, M., Carter, J.P. and Randolph, M.F. (2016), "Numerical analysis of penetrometers free-falling into soil with shear strength increasing linearly with depth", Comput. Geotech., 72, 57-66. https://doi.org/10.1016/j.compgeo.2015.11.002
  42. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
  43. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
  44. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785
  45. Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081
  46. Ni, Q., Hird, C.C. and Guymer, I. (2010), "Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry", Geotechnique, 60(2), 121-132. https://doi.org/10.1680/geot.8.P.052
  47. Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001
  48. Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D., Nguyen, H.D., Ly, H.B., Le, H.V. and Prakash, I. (2020), "A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil", Sustainability, 12(6), 2218. https://doi.org/10.3390/su12062218
  49. Pourghasemi, H.R. and Rahmati, O. (2018), "Prediction of the landslide susceptibility: Which algorithm, which precision?", Catena, 162, 177-192. https://doi.org/10.1016/j.catena.2017.11.022
  50. Reddy, G.T., Reddy, M.P.K., Lakshmanna, K., Rajput, D.S., Kaluri, R. and Srivastava, G. (2020a), "Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis", Evolution. Intell., 13(2), 185-196. https://doi.org/10.1007/s12065-019-00327-1
  51. Reddy, T., Bhattacharya, S., Maddikunta, P.K.R., Hakak, S., Khan, W.Z., Bashir, A.K., Jolfaei, A. and Tariq, U. (2020b), "Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset", Multimedia Tools Applicat., 1-25. https://doi.org/10.1007/s11042-020-09988-y
  52. Rong, G., Alu, S., Li, K., Su, Y., Zhang, J., Zhang, Y. and Li, T. (2020), "Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models-A Case Study of Shuicheng County, China", Water, 12(11), 3066. https://doi.org/10.3390/w12113066
  53. Samui, P. (2008), "Prediction of friction capacity of driven piles in clay using the support vector machine", Can. Geotech. J., 45(2), 288-295. https://doi.org/10.1139/T07-072
  54. Sharma, S., Ahmed, S., Naseem, M., Alnumay, W.S., Singh, S. and Cho, G.H. (2021), "A Survey on Applications of Artificial Intelligence for Pre-Parametric Project Cost and Soil Shear-Strength Estimation in Construction and Geotechnical Engineering", Sensors, 21(2), 463. https://doi.org/10.3390/s21020463
  55. Stanier, S.A. (2012), "Modelling the behaviour of helical screw piles", Ph.D. Thesis; University of Sheffield, Department of Civil and Structural Engineering.
  56. Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dyn., 20(06), 2040004. https://doi.org/10.1142/S0219455420400040
  57. Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer Science & Business Media.
  58. Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. and Guan, Z. (2018), "Reducing complexity of HEVC: A deep learning approach", IEEE Transact. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035
  59. Xu, F., Foong, L.K. and Lyu, Z. (2020), "A novel search scheme based on the social behavior of crow flock for feed-forward learning improvement in predicting the soil compression coefficient", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01119-3
  60. Yan, J., Pu, W., Zhou, S., Liu, H. and Greco, M.S. (2020), "Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks", IEEE Transact. Signal Process., 68, 4055-4068. https://doi.org/10.1109/TSP.2020.3007313
  61. Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S. and Song, W. (2015), "New pore space characterization method of shale matrix formation by considering organic and inorganic pores", J. Natural Gas Sci. Eng., 27, 496-503. https://doi.org/10.1016/j.jngse.2015.08.017
  62. Yang, J., Li, S., Wang, Z., Dong, H., Wang, J. and Tang, S. (2020a), "Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges", Materials, 13(24), 5755. https://doi.org/10.3390/ma13245755
  63. Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A. and He, L. (2020b), "Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin'anjiang river in Huangshan, China", Int. J. Environ. Res. Public Health, 17(8), 2942. https://doi.org/10.3390/ijerph17082942
  64. Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
  65. Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., Int. J., 26(3), 263-275. https://doi.org/10.12989/sss.2020.26.3.263
  66. Yue, H., Wang, H., Chen, H., Cai, K. and Jin, Y. (2020), "Automatic detection of feather defects using lie group and fuzzy fisher criterion for shuttlecock production", Mech. Syst. Signal Process., 141, 106690. https://doi.org/10.1016/j.ymssp.2020.106690
  67. Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monitor., 27(6), e2543. https://doi.org/10.1002/stc.2543
  68. Zhang, K., Wang, Q., Chao, L., Ye, J., Li, Z., Yu, Z., Yang, T. and Ju, Q. (2019a), "Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semihumid transitional zone in China", J. Hydrol., 574, 903-914. https://doi.org/10.1016/j.jhydrol.2019.04.087
  69. Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, D.A., Bui, D.T. and Moayedi, H. (2019b), "Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost", Natural Resour. Res., 29(2), 711-721. https://doi.org/10.1007/s11053-019-09492-7
  70. Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, 111219. https://doi.org/10.1016/j.engstruct.2020.111219
  71. Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-ofthe-art review on responses of RC structures subjected to lateral impact loads", Arch. Computat. Methods Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5
  72. Zhang, C., Gholipour, G. and Mousavi, A.A. (2020c), "Blast loads induced responses of RC structural members: State-of-the-art review", Compos. Part B: Eng., 108066. https://doi.org/10.1016/j.compositesb.2020.108066
  73. Zhang, W., Tang, Z., Yang, Y. and Wei, J. (2021), "Assessment of FRP-concrete interfacial debonding with coupled mixed-mode cohesive zone model", J. Compos. Constr., 25(2), 04021002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114
  74. Zhao, H., Ge, L. and Luna, R. (2010), "Low viscosity pore fluid to manufacture transparent soil", Geotech. Test. J., 33(6), 463-468. https://doi.org/10.1520/GTJ102607
  75. Zou, H. and Hastie, T. (2005), "Regularization and variable selection via the elastic net", Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x