DOI QR코드

DOI QR Code

THE EXTENDIBILITY OF DIOPHANTINE PAIRS WITH FIBONACCI NUMBERS AND SOME CONDITIONS

  • Park, Jinseo (Department of Mathematics Education Catholic Kwandong University)
  • Received : 2021.05.08
  • Accepted : 2021.07.20
  • Published : 2021.08.15

Abstract

A set {a1, a2, ⋯ , am} of positive integers is called a Diophantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. Let Fn be the nth Fibonacci number which is defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn. In this paper, we find the extendibility of Diophantine pairs {F2k, b} with some conditions.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).

References

  1. A. Baker, G. Wustholz, Logarithmic forms and group varieties, J. Reine Angew. Math., 442 (1993), 19-62.
  2. A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc., 127 (1999), 1999-2005 https://doi.org/10.1090/S0002-9939-99-04875-3
  3. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94, (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
  4. A. Dujella, An absolute bound for the size of Diophantine m-tuple, J. Number theory, 89 (2001), no. 1, 126-150. https://doi.org/10.1006/jnth.2000.2627
  5. A. Dujella, Diophantine m-tuples and elliptic curves, 21st Journees Arithmetiques (Rome, 2001), J. Theor. Nombres Bordeaux 13, (2001), no 1, 111-124. https://doi.org/10.5802/jtnb.308
  6. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math., 566 (2004), 183-214.
  7. A. Dujella, A. Petho, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., (2) 49 (1998), no. 195, 291-306.
  8. A. Filipin, Y. Fujita, A. Togbe, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III., 49(69) (2014), no. 1, 25-36. https://doi.org/10.3336/gm.49.1.03
  9. A. Filipin, Y. Fujita, A. Togbe, The extendibility of Diophantine pairs II: Examples, J. Number theory, 145 (2014), 604-631. https://doi.org/10.1016/j.jnt.2014.06.020
  10. Y. Fujita, The extensibility of Diophantine pair {k-1, k+1}, J. Number Theory, 128 (2008), no. 2, 323-353. https://doi.org/10.1016/j.jnt.2007.03.013
  11. Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples {F2k+1, F2k+3, F2k+5} and integer points on the attached elliptic curves, Rocky Mountain J. Math., 39 (2009), no. 6, 1907-1932. https://doi.org/10.1216/RMJ-2009-39-6-1907
  12. B. He, A. Togbe, V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc., 371 (2019), 6665-6709. https://doi.org/10.1090/tran/7573
  13. V. E. Hoggatt, G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart., 15 (1977), 323-330.
  14. J. Park, J. B. Lee, Some family of Diophantine pairs with Fibonacci numbers, Indian J. Pure Appl. Math., 50, (2019), no. 2, 367-384. https://doi.org/10.1007/s13226-019-0332-9