Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).
References
- A. Baker, G. Wustholz, Logarithmic forms and group varieties, J. Reine Angew. Math., 442 (1993), 19-62.
- A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc., 127 (1999), 1999-2005 https://doi.org/10.1090/S0002-9939-99-04875-3
- A. Dujella, A parametric family of elliptic curves, Acta Arith. 94, (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
- A. Dujella, An absolute bound for the size of Diophantine m-tuple, J. Number theory, 89 (2001), no. 1, 126-150. https://doi.org/10.1006/jnth.2000.2627
- A. Dujella, Diophantine m-tuples and elliptic curves, 21st Journees Arithmetiques (Rome, 2001), J. Theor. Nombres Bordeaux 13, (2001), no 1, 111-124. https://doi.org/10.5802/jtnb.308
- A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math., 566 (2004), 183-214.
- A. Dujella, A. Petho, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., (2) 49 (1998), no. 195, 291-306.
- A. Filipin, Y. Fujita, A. Togbe, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III., 49(69) (2014), no. 1, 25-36. https://doi.org/10.3336/gm.49.1.03
- A. Filipin, Y. Fujita, A. Togbe, The extendibility of Diophantine pairs II: Examples, J. Number theory, 145 (2014), 604-631. https://doi.org/10.1016/j.jnt.2014.06.020
- Y. Fujita, The extensibility of Diophantine pair {k-1, k+1}, J. Number Theory, 128 (2008), no. 2, 323-353. https://doi.org/10.1016/j.jnt.2007.03.013
- Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples {F2k+1, F2k+3, F2k+5} and integer points on the attached elliptic curves, Rocky Mountain J. Math., 39 (2009), no. 6, 1907-1932. https://doi.org/10.1216/RMJ-2009-39-6-1907
- B. He, A. Togbe, V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc., 371 (2019), 6665-6709. https://doi.org/10.1090/tran/7573
- V. E. Hoggatt, G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart., 15 (1977), 323-330.
- J. Park, J. B. Lee, Some family of Diophantine pairs with Fibonacci numbers, Indian J. Pure Appl. Math., 50, (2019), no. 2, 367-384. https://doi.org/10.1007/s13226-019-0332-9