References
- Abdollahi Azghan, M., Asghari Arpatappeh, F. and Eslami-Farsani, R. (2017), "Experimental study of the effect of cryogenic cycling and metal surface treatment on flexural properties of aluminum-epoxy/basalt fibers laminate composite", Iran. J. Manuf. Eng., 4(1), 15-24.
- Anashkin, O., Keilin, V. and Patrikeev, V. (1999), "Cryogenic vacuum tight adhesive", Cryogen., 39(9), 795-798. https://doi.org/10.1016/S0011-2275(99)00089-2.
- Chawla, K. (1973), "Thermal cycling of copper matrix-tungsten fiber composites: A metallographic study", Metallography, 6(2), 155-169. https://doi.org/10.1016/0026-0800(73)90007-4.
- Couchman, L. and Mouritz, A.P. (2006), "Modeling of naval composite structures in fire", Cooperative Research Centre for Advanced Composite Structures
- Ebrahimnezhad-Khaljiri, H. and Eslami-Farsani, R. (2015), "The effect of hybridization on thermal and mechanical properties of glass/oxidized PAN fibers-polymer composites", Fib. Polym., 16(11), 2445-2450. https://doi.org/10.1007/s12221-015-5296-8.
- Eslami-Farsani, R., Reza Khalili, S.M. and Najafi, M. (2013), "Effect of thermal cycling on hardness and impact properties of polymer composites reinforced by basalt and carbon fibers", J. Therm. Stress., 36(7), 684-698. https://doi.org/10.1080/01495739.2013.787846.
- Fan, X. and Wu, Z. (2016), "C 0-type Reddy's theory for composite beams using FEM under thermal loads", Struct. Eng. Mech., 57(3), 457-471. https://doi.org/10.12989/sem.2016.57.3.457.
- Ibekwe, S.I., Mensah, P.F., Li, G., Pang, S.S. and Stubblefield, M.A. (2007), "Impact and post impact response of laminated beams at low temperatures", Compos. Struct., 79(1), 12-17. https://doi.org/10.1016/j.compstruct.2005.11.025.
- Jafari, A., Ashrafi, H., Bazli, M. and Ozbakkaloglu, T. (2019), "Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries", Compos. Struct., 223, 110959. https://doi.org/10.1016/j.compstruct.2019.110959.
- Kang, S.G., Kim, M.G. and Kim, C.G. (2007), "Evaluation of cryogenic performance of adhesives using composite-aluminum double-lap joints", Compos. Struct., 78(3), 440-446. https://doi.org/10.1016/j.compstruct.2005.11.005.
- Khalili, S.M.R., Najafi, M. and Eslami-Farsani, R. (2017), "Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers", Mech. Compos. Mater., 52(6), 807-816. https://doi.org/10.1007/s11029-017-9632-5.
- Khodjet-Kesba, M., Benkhedda, A., Adda Bedia, E. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. http://doi.org/10.12989/sem.2018.67.2.165.
- Kim, M.G., Kang, S.G., Kim, C.G. and Kong, C.W. (2007), "Tensile response of graphite/epoxy composites at low temperatures", Compos. Struct., 79(1), 84-89. https://doi.org/10.1007/s11029-017-9632-5.
- Kubit, A., Trzepiecinski, T., Klonica, M., Hebda, M. and Pytel, M. (2019), "The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test", Compos. Part B: Eng., 176, 107217. https://doi.org/10.1016/j.compositesb.2019.107217.
- Lee, S.M. (1992), Handbook of Composite Reinforcements, John Wiley & Sons
- Mahato, K.K., Rathore, D.K., Dutta, K. and Ray, B.C. (2017), "Effect of loading rates of severely thermal-shocked glass fiber/epoxy composites", Compos. Commun., 3, 7-10. https://doi.org/10.1016/j.coco.2016.11.001.
- Ray, B. (2005), "Effects of thermal and cryogenic conditionings on mechanical behavior of thermally shocked glass fiber-epoxy composites", J. Reinf. Plast. Compos., 24(7), 713-717. https://doi.org/10.1177/0731684405046081.
- Ray, B.C. (2006), "Effect of thermal shock on interlaminar strength of thermally aged glass fiber-reinforced epoxy composites", J. Appl. Polym. Sci., 100(3), 2062-2066. https://doi.org/10.1002/app.23019.
- Shettar, M., Kini, U.A., Sharma, S., Hiremath, P. and Gowrishankar, M. (2019), "Investigation and optimization of thermal shock effects on the properties and microstructure of Nanoclay-Glass Fiber Reinforced Epoxy Composites", Mater. Res. Exp., 6(10), 105360. https://doi.org/10.1088/2053-1591/ab3f67
- Surendra Kumar, M., Sharma, N. and Ray, B. (2008), "Mechanical behavior of glass/epoxy composites at liquid nitrogen temperature", J. Reinf. Plast. Compos., 27(9), 937-944. https://doi.org/10.1177/0731684407085877.
- Torabizadeh, M., Shokrieh, M. and Fereidoon, A. (2010), "Progressive damage analysis of glass-epoxy laminated composites under static tensile loading at low temperature". Model. Eng., 8(21), 1.
- Usami, S., Suzuki, T., Ejima, H. and Asano, K. (1999), "Thermo-mechanical properties of epoxy GFRPs used in superconducting magnet winding", Cryogen., 39(11), 905-914. https://doi.org/10.1016/S0011-2275(99)00123-X.