참고문헌
- Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. http://doi.org/10.12989/scs.2019.33.5.699.
- Bennai, R., Ait Atmane, H. and Touni, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
- Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234, 3667-3688. https://doi.org/10.1177/0954406220916481.
- Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888.
- Bui, T.Q., Khosravifard, A., Zhang, Ch., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
- Colombo, P. and Degischer, H.P. (2010), "Highly porous metals and ceramics", Mater. Sci. Technol., 26, 1145-1158. https://doi.org/10.1179/026708310X12756557336157.
- Daikh, A.A. and Zenkour, A.M. (2019a), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Exp., 6, 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Daikh, A.A. and Zenkour, A.M. (2019b), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Exp., 6, 065703. https://doi.org/10.1088/2053-1591/ab0971.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. http://doi.org/10.12989/anr.2019.7.4.223.
- Fasana, A. and Marchesiello, S. (2001), "Rayleigh-ritz analysis of sandwich beams", J. Sound Vib., 241, 643-652. https://doi.org/10.1006/jsvi.2000.3311.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://doi.org/10.12989/scs.2020.36.3.293.
- Hamed M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://doi.org/10.12989/sem.2019.71.1.089.
- Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11, 395-424. https://doi.org/10.1080/15376490490451561.
- Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M. and Di Sciuva, M. (2015), "Free vibration analysis of sandwich beams using the Refined Zigzag Theory: An experimental assessment", Meccanica, 50, 2525-2535. https://doi.org/10.1007/s11012-015-0166-4.
- Karamanli, A. and Aydogdu, M. (2019), "Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory", Int. J. Mech. Sci., 159, 165-181. https://doi.org/10.1016/j.ijmecsci.2019.05.047.
- Khalili, S.M.R., Nemati, N., Malekzadeh, K. and Damanpack, A.R. (2010), "Free vibration analysis of sandwich beams using improved dynamic stiffness method", Compos. Struct., 92, 387-394. https://doi.org/10.1016/j.compstruct.2009.08.020.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Klouche Djedid, I., Benachour, A. Houari, M.S.A, Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021.
- Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10, 775-787. https://doi.org/10.1002/adem.200800241.
- Li, D., Deng, Z., Xiao, H. and Jin, P. (2018), "Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core", Thin Wall. Struct., 122, 8-16. https://doi.org/10.1016/j.tws.2017.09.033.
- Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. http://doi.org/10.12989/scs.2020.36.1.047.
- Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proc. Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. http://doi.org/10.12989/anr.2020.8.1.059.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
- Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
- Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2009), "Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties", Int. J. Mech. Sci., 51, 363-371. https://doi.org/10.1016/j.ijmecsci.2009.03.003.
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.
- She, G.L, Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Singh, S.J. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
- Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res., 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.
- Taskin, V. and Aydan Demirhan, P. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/sem.2021.77.4.549.
- Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded nsi beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
- Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
- Wang, Y. and Wang, X. (2016), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18, 294-320. https://doi.org/10.1177/1099636215601373.
- Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Arch. Appl. Mech., 89, 2335- 2349. https://doi.org/10.1007/s00419-019-01579-0.
- Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Wu, H. and Liu, H. (2020), "Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01005-y.
- Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M. and Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 152, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. http://doi.org/10.12989/scs.2020.35.2.249.
- Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
- Yildirim, S. (2020), "Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method", AIAA J., 58, 5431-5439. https://doi.org/10.2514/1.J059587.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.