DOI QR코드

DOI QR Code

A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers

  • Hadji, Lazreg (Laboratory of Geomatics and Sustainable Development, Ibn Khaldoun University of Tiaret) ;
  • Madan, Royal (Department of Mechanical Engineering, National Institute of Technology Raipur) ;
  • Bhowmick, Shubhankar (Department of Mechanical Engineering, National Institute of Technology Raipur) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.03.03
  • Accepted : 2021.04.28
  • Published : 2021.08.10

Abstract

In this paper, a simple n-order refined theory is developed for free vibration of a simply supported sandwich beam with functionally graded porous layers. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, and does not require a shear correction factor. The variation of shear stress is parabolic across the thickness and the condition at the top and bottom surface are shear stress-free. Equations of motion are derived from Hamilton's principle. In the solution of the governing equations, the Navier procedure is implemented. For porosity effect, four different porosity distributions namely O, X, V, and homogeneous distribution types are modelled; power-law variation of functionally graded face sheets is considered. Results show the effects of varying gradients, thickness to length ratios, effects of the porosity parameters and porosity types on free vibration of functionally graded sandwich beams for simply supported boundary conditions. The results of the present method were validated with existing literature for both hard (ceramic) core material and soft (metal) core material, and good agreement with the benchmarks is seen. The effect of hard-core and soft-core material on natural frequency is found to be contrasting in nature.

Keywords

References

  1. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  2. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
  3. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. http://doi.org/10.12989/scs.2019.33.5.699.
  4. Bennai, R., Ait Atmane, H. and Touni, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  5. Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234, 3667-3688. https://doi.org/10.1177/0954406220916481.
  6. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888.
  7. Bui, T.Q., Khosravifard, A., Zhang, Ch., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
  8. Colombo, P. and Degischer, H.P. (2010), "Highly porous metals and ceramics", Mater. Sci. Technol., 26, 1145-1158. https://doi.org/10.1179/026708310X12756557336157.
  9. Daikh, A.A. and Zenkour, A.M. (2019a), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Exp., 6, 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  10. Daikh, A.A. and Zenkour, A.M. (2019b), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Exp., 6, 065703. https://doi.org/10.1088/2053-1591/ab0971.
  11. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  12. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. http://doi.org/10.12989/anr.2019.7.4.223.
  13. Fasana, A. and Marchesiello, S. (2001), "Rayleigh-ritz analysis of sandwich beams", J. Sound Vib., 241, 643-652. https://doi.org/10.1006/jsvi.2000.3311.
  14. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  15. Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://doi.org/10.12989/scs.2020.36.3.293.
  16. Hamed M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://doi.org/10.12989/sem.2019.71.1.089.
  17. Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11, 395-424. https://doi.org/10.1080/15376490490451561.
  18. Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M. and Di Sciuva, M. (2015), "Free vibration analysis of sandwich beams using the Refined Zigzag Theory: An experimental assessment", Meccanica, 50, 2525-2535. https://doi.org/10.1007/s11012-015-0166-4.
  19. Karamanli, A. and Aydogdu, M. (2019), "Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory", Int. J. Mech. Sci., 159, 165-181. https://doi.org/10.1016/j.ijmecsci.2019.05.047.
  20. Khalili, S.M.R., Nemati, N., Malekzadeh, K. and Damanpack, A.R. (2010), "Free vibration analysis of sandwich beams using improved dynamic stiffness method", Compos. Struct., 92, 387-394. https://doi.org/10.1016/j.compstruct.2009.08.020.
  21. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  22. Klouche Djedid, I., Benachour, A. Houari, M.S.A, Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021.
  23. Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10, 775-787. https://doi.org/10.1002/adem.200800241.
  24. Li, D., Deng, Z., Xiao, H. and Jin, P. (2018), "Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core", Thin Wall. Struct., 122, 8-16. https://doi.org/10.1016/j.tws.2017.09.033.
  25. Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. http://doi.org/10.12989/scs.2020.36.1.047.
  26. Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proc. Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
  27. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. http://doi.org/10.12989/anr.2020.8.1.059.
  28. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  29. Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
  30. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2009), "Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties", Int. J. Mech. Sci., 51, 363-371. https://doi.org/10.1016/j.ijmecsci.2009.03.003.
  31. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  32. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
  33. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.
  34. She, G.L, Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  35. Singh, S.J. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
  36. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res., 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.
  37. Taskin, V. and Aydan Demirhan, P. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/sem.2021.77.4.549.
  38. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded nsi beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  39. Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
  40. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  41. Wang, Y. and Wang, X. (2016), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18, 294-320. https://doi.org/10.1177/1099636215601373.
  42. Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Arch. Appl. Mech., 89, 2335- 2349. https://doi.org/10.1007/s00419-019-01579-0.
  43. Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
  44. Wu, H. and Liu, H. (2020), "Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01005-y.
  45. Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M. and Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 152, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004.
  46. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. http://doi.org/10.12989/scs.2020.35.2.249.
  47. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  48. Yildirim, S. (2020), "Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method", AIAA J., 58, 5431-5439. https://doi.org/10.2514/1.J059587.
  49. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.