DOI QR코드

DOI QR Code

Growth and characterization of superconductor-ferromagnet thin film heterostructure La1.85Sr0.15CuO4/SrRuO3

  • Kim, Youngdo (Center for Correlated Electron Systems, Institute for Basic Science) ;
  • Sohn, Byungmin (Center for Correlated Electron Systems, Institute for Basic Science) ;
  • Kim, Changyoung (Center for Correlated Electron Systems, Institute for Basic Science)
  • Received : 2021.05.12
  • Accepted : 2021.06.05
  • Published : 2021.06.30

Abstract

Superconductor-ferromagnet thin film heterostructure is an ideal system for studying the interplay between superconductivity and ferromagnetism. These two antagonistic properties combined in thin film heterostructure create interesting proximity effects such as spin-triplet superconductivity. Thin film heterostructure of optimally doped La2-xSrxCuO4(LSCO) cuprate superconductor and SrRuO3(SRO) ruthenate ferromagnet has been grown by pulsed laser deposition. Its temperature-dependent resistivity and Hall effect measurements show that our LSCO/SRO heterostructure has both superconductivity and ferromagnetism. In the Hall effect measurement results, we find additional hump-like structures appear in the anomalous Hall effect signal in the vicinity of superconducting transition. We conclude that giant magnetoresistance of the LSCO layer distorts the AHE signal, which results in a hump-like structure.

Keywords

Acknowledgement

This work is supported by the Institute for Basic Science (Grant No. IBS-R009-G2).

References

  1. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, "Long-range proximity effects in superconductor-ferromagnet structures," Phys. Rev. Lett., vol. 86, no. 18, pp. 4096-4099, 2001. https://doi.org/10.1103/PhysRevLett.86.4096
  2. A. F. Volkov, F. S. Bergeret, and K. B. Efetov, "Odd Triplet Superconductivity in Superconductor-Ferromagnet Multilayered Structures," Phys. Rev. Lett., vol. 90, no. 11, p. 4, 2003.
  3. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, "Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures," Rev. Mod. Phys., vol. 77, no. 4, pp. 1321-1373, 2005. https://doi.org/10.1103/RevModPhys.77.1321
  4. S. Rex, I. V Gornyi, and A. D. Mirlin, "Majorana bound states in magnetic skyrmions imposed onto a superconductor," Phys. Rev. B, vol. 100, p. 64504, 2019. https://doi.org/10.1103/PhysRevB.100.064504
  5. M. Eschrig, "Spin-polarized supercurrents for spintronics," Phys. Today, vol. 64, no. 1, pp. 43-49, 2011. https://doi.org/10.1063/1.3541944
  6. R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, "A spin triplet supercurrent through the half-metallic ferromagnet CrO2," Nature, vol. 439, no. 7078, pp. 825-827, 2006. https://doi.org/10.1038/nature04499
  7. M. Eschrig and T. Lofwander, "Triplet supercurrents in clean and disordered half-metallic ferromagnets," Nat. Phys., vol. 4, no. 2, pp. 138-143, 2008. https://doi.org/10.1038/nphys831
  8. T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O. Birge, "Observation of spin-triplet superconductivity in co-based josephson junctions," Phys. Rev. Lett., vol. 104, no. 13, pp. 2-5, 2010.
  9. G. A. Ovsyannikov, et al., "Triplet superconductivity in oxide ferromagnetic interlayer of mesa-structure," J. Phys. Conf. Ser., vol. 592, no. 1, 2014.
  10. S. Diesch, et al., "Creation of equal-spin triplet superconductivity at the Al/EuS interface," Nat. Commun., vol. 9, no. 1, pp. 1-8, 2018. https://doi.org/10.1038/s41467-017-02088-w
  11. M. S. Anwar, et al., "Observation of superconducting gap spectra of long-range proximity effect in Au/SrTiO3/SrRuO3/Sr2RuO4 tunnel junctions," Phys. Rev. B, vol. 100, no. 2, pp. 1-6, 2019.
  12. P. Prieto, et al., "Magnetism and superconductivity in superlattices," J. Appl. Phys., vol. 89, p. 8026, 2001. https://doi.org/10.1063/1.1370994
  13. V. Pena, et al., "Giant magnetoresistance in ferromagnet/superconductor superlattices," Phys. Rev. Lett., vol. 94, no. 5, 2005.
  14. G. M. De Luca, et al., "Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides," Nat. Commun., vol. 5, pp. 1-7, 2014.
  15. D. Kim, et al., "Capping and gate control of anomalous Hall effect and hump structure in ultra-thin SrRuO3 films," Appl. Phys. Lett., vol. 118, no. 17, p. 173102, Apr. 2021. https://doi.org/10.1063/5.0050163
  16. J. P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. W. Seo, and G. Van Tendeloo, "Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain," Nature, vol. 394, no. 6692, pp. 453-456, Jul. 1998. https://doi.org/10.1038/28810
  17. T. L. Meyer, L. Jiang, S. Park, T. Egami, and H. N. Lee, "Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films," APL Mater., vol. 3, no. 12, pp. 0-6, 2015.
  18. B. Sohn, et al., "Sign-tunable anomalous hall effect induced by symmetry-protected nodal structures in ferromagnetic perovskite oxide thin films," arXiv:1912.04757, 2019.