DOI QR코드

DOI QR Code

Structural suitability of GdFeO3 as a magnetic buffer layer for GdBa2Cu3O7-x superconducting thin films

  • Park, H.S. (Department of Physics, Chungbuk National University) ;
  • Oh, J.Y. (Department of Physics, Chungbuk National University) ;
  • Song, B.H. (Department of Physics, Chungbuk National University) ;
  • Kang, B. (Department of Physics, Chungbuk National University)
  • Received : 2021.05.24
  • Accepted : 2021.06.03
  • Published : 2021.06.30

Abstract

We investigated the structural suitability of GdFeO3 (GdFO) as a buffer layer for the GdBa2xCu3O7-x (GdBCO) superconducting films. GdFO films with different thicknesses and GdBCO thin films were all prepared by using a pulsed laser deposition technique. The analyses of X-ray diffraction and EXAFS data indicates that the c-axis parameter increases and the Fe-O bond length decreases with the GdFO thickness due to the compressive stain induced by the lattice mismatch between GdFO and STO substrate and as a result, the Debye-Waller factor, an index of disorder in the local structure near the Fe-O bond, increases with the GdFO thickness. However, for the GdBCO/GdFO bilayer structure, the Debye-Waller factor decreases as the GdFO thickness increases indicating a diminished disorder by the structural coupling between GdFO and GdBCO. These results indicate that an appropriate thickness of GdFO is required to be utilized as a magnetic buffer layer for the GdBCO superconducting films.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2018R1A2B6004784).

References

  1. A. Bianconi, G. Bianconi, D. Di Castro, H. Oyanagi, and N. L. Saini, "The stripe critical point for cuprates," J. Phys.: Condens. Matter, vol. 12, pp. 10655, 2000. https://doi.org/10.1088/0953-8984/12/50/326
  2. N. L. Saini, H. Oyanagi, Z. Wu, and A. Bianconi, "Lattice fluctuations and inhomogeneous charge states of high-Tc superconductors," Supercond. Sci. Technol., vol. 15, pp. 439, 2002. https://doi.org/10.1088/0953-2048/15/3/331
  3. T. Horide, K. Taguchi, K. Matsumoto, N. Matsukida, M. Ishimaru, P. Mele, and R. Kita, "Influence of matching field on critical current density and irreversibility temperature in YBa2Cu3O7 films with BaMO3 (M = Zr, Sn, Hf) nanorods," Appl. Phys. Lett., vol. 108, pp. 082601, 2016. https://doi.org/10.1063/1.4942463
  4. T. Horide, N. Matsukida, M. Ishimaru, R. Kita, S. awaji, and K. Matsumoto, "Pin potential effect on vortex pinning in YBa2Cu3O7-δ films containing nanorods: Pin size effect and mixed pinning," Appl. Phys. Lett., vol. 110, pp. 052601, 2017. https://doi.org/10.1063/1.4975300
  5. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horri, and R. Kita, "Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films (M = Zr, Sn)," Supercond. Sci. Technol., vol. 21, pp. 032002, 2008. https://doi.org/10.1088/0953-2048/21/3/032002
  6. L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. Holtzberg, "Vortex confinement by columnar defects in YBa2Cu3O7 crystals: Enhanced pinning at high fields and temperatures," Phys. Rev. Lett., vol. 67, pp. 648, 1991. https://doi.org/10.1103/PhysRevLett.67.648
  7. R. Weinstein, R, -P, Sawh, A. Gandini, and D. Parks, "Improved pinning by multiple in-line damage," Supercond. Sci. Technol., vol. 18, pp. 2, 2005.
  8. Y. Wang, Y. Li, L. Liu, and D. Xu, "Improvement of flux pinning in GdBa2Cu3O7-δ thin film by nanoscale ferromagnetic La0.67Sr0.33MnO3 pretreatment of substrate surface," Ceram. Int., vol. 44, pp. 225, 2018. https://doi.org/10.1016/j.ceramint.2017.09.162
  9. T. Aytug, M. Paranthaman, K. J. Leonard, S. Kang, P. M. Martin, L. Heatherly, A. Goyal, A. O. Ijaduola, J. R. Thompson, D. K Christen, R. Meng, I. Rusakova, and C. W. Chu, "Analysis of flux pinning in YBa2Cu3O7-δ films by nanoparticle-modified substrate surfaces," Phys. Rev. B, vol. 74, pp. 184505, 2006. https://doi.org/10.1103/PhysRevB.74.184505
  10. L. N. Bulaevskii, E. M. Chudnovsky, and M. P. Maley, "Magnetic pinning in superconductor-ferromagnetic multilayers," Appl. Phys. Lett., vol. 76, pp. 2594, 2000. https://doi.org/10.1063/1.126419
  11. A. K. Jha, N. Khare, and R. Pinto, "Interface engineering using ferromagnetic nanoparticles for enhancing pinning in YBa2Cu3O7 thin film," J. Appl. Phys., vol. 110, pp. 113920, 2011. https://doi.org/10.1063/1.3665874
  12. C. Z. Chen, Z. Y. Liu, L. Zeng, C. B. Cai, R. Zeng, and S. X. Dou, "Robust high temperature magnetic pinning induced by proximity in YBa2Cu3O7-δ/L0.67Sr0.33MnO3 hybrids," J. Appl. Phys., vol. 109, pp. 073921, 2011. https://doi.org/10.1063/1.3573491
  13. J. Huang and H. Wang, "Effective Magnetic Pinning Schemes for Enhanced Superconducting Property in High Temperature Superconductor YBa2Cu3O7-x: A Review," Supercond. Sci. Tech., vol. 30, pp. 114004, 2017. https://doi.org/10.1088/1361-6668/aa8d32
  14. V. Pena, C. Visani, J. Garcia-Barriocanal, D. Arias, Z. Sefrioui, C. Leon, J. Santamaria, and Carmen A. Almasan, "Spin diffusion versus proximity effect at ferromagnet/ superconductor La0.7Ca0.3MnO3/YBa2Cu3O7-δ interfaces," Phys. Rev. B, vol. 73, pp. 104513, 2006. https://doi.org/10.1103/PhysRevB.73.104513
  15. Alok K. Jha, Neeraj Khare, and R. Pinto, "Influence of Interfacial LSMO Nanoparticles/Layer on the Vortex Pinning Properties of YBCO Thin Film," J. Supercond. Nov. Magn., vol. 27, pp. 1021, 2014. https://doi.org/10.1007/s10948-013-2384-0
  16. J. G. Lin, S. L. Cheng, C. R. Chang, and D. Y. Xing, "Superconducting and transport properties of YBa2Cu3O7/La0.7Sr0.3MnO3 bilayers," J. Appl. Phys., vol. 98, pp. 023910, 2005. https://doi.org/10.1063/1.1991973
  17. P. Przyslupski, I. Komissarov, W. Paszkowicz, P. Dluzewski, R. Minikayev, and M. Sawicki, "Magnetic properties of L0.67Sr0.33MnO3/YBa2Cu3O7 superlattice," Phys. Rev. B, vol. 69, pp. 134428, 2004. https://doi.org/10.1103/PhysRevB.69.134428
  18. S. Soltan, J. Albrecht, and H. U. Habermeier, "Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation," Phys. Rev. B, vol. 70, pp. 144517, 2004. https://doi.org/10.1103/PhysRevB.70.144517
  19. S. C. Wimbush, J. H. Durrell, C. F. Tsai, H. Wang, Q. X. Jia, M. G. Blamire, and J. L. MacManus-Driscoll, "Enhanced critical current in YBa2Cu3O7-x thin films through pinning by ferromagnetic YFeO3 nanoparticles," Supercond. Sci. Technol., vol. 23, pp. 045019, 2010. https://doi.org/10.1088/0953-2048/23/4/045019
  20. A. Panchwanee, V. R. Reddy, A. Gupta, R. J. Choudhary, D. M. Phase, V. Ganesan, "Study of orthorhombic twins in epitaxial GdFeO3 thin films." Thin Solid Films, vol. 669, pp. 301-305, 2019. https://doi.org/10.1016/j.tsf.2018.10.047
  21. J. Y. Oh, Tien M. Le, A.T. Pham, D. H. Tran, D. S. Yang, and B. Kang, "Role of interlayer coupling in alkaline-substituted (Bi, Pb)-2223 superconductors," J. Alloy. Compd., vol. 804, pp. 348, 2019. https://doi.org/10.1016/j.jallcom.2019.07.029
  22. R. Prins, D. C. Koningsberger, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, XANES, Wiley, New York, 1988.
  23. J. Y. Oh, C. Y. Song, Y. J. Ko, D. S. Yang, B. Kang, "Strain-induced local structural change and its effect on the superconducting properties of GdBa2Cu3O7-x/La0.7Sr0.3MnO3 heterostructure," Supercond, Sci. Technol., vol. 33, pp. 075002, 2020. https://doi.org/10.1088/1361-6668/ab89ee