DOI QR코드

DOI QR Code

Josephson effect of the superconducting van der Waals junction

  • Park, Sungyu (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science) ;
  • Kwon, Chang Il (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science) ;
  • Kim, Jun Sung (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science)
  • Received : 2021.05.12
  • Accepted : 2021.05.22
  • Published : 2021.06.30

Abstract

Heterostructures fabricated by various combinations of van der Waals (vdW) materials enable us to investigate disorder-free physical properties and realize novel functional devices. Superconducting vdW junctions have attracted a lot of attention because of its simple structure without a barrier layer. In superconducting vdW junction, without extra fabrication effort, a natural barrier can be formed, whose character is sensitive to distance and angle of lattice between two superconducting vdW materials. Using high-quality single crystals and the dry transfer technique, we fabricated the vertically stacked NbSe2/NbSe2 and FeSe/FeSe vdW junctions and investigated their Josephson junction properties. We found that in the FeSe junctions, Josephson coupling is extremely sensitive to the fabrication conditions, in contrast to the NbSe2 junctions. We attributed this distinct character of the FeSe junctions to surface instability and small Fermi surface of FeSe.

단결정의 덩어리 시료로부터 박리된 NbSe2와 FeSe 박막을 이용한 동종 초전도 vdW 접합을 만들고 저온전도측정을 통해 JJ 효과를 확인하였다. 각 물질의 초전도 틈을 측정하였으며 기존 결과와 잘 일치하는 것을 확인하였다. FeSe 접합의 경우 NbSe2 접합과 다르게 JJ가 구현되지 않는 경우가 다수 발생하는데 이는 NbSe2와 구분되는 FeSe의 특성때문으로 보이며 일관성있는 JJ 구현을 위해서 저온 접합이나 접합 각도 의존성을 통한 향후 연구가 필요하다. 그럼에도 불구하고, 본 연구 결과는 FeSe 2차원 결정을 이용해 JJ가 잘 구현될 수 있음을 실험적으로 보인 첫 사례로서 그 의의를 갖는다.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science (80-.), vol. 306, pp. 666, 2004. https://doi.org/10.1126/science.1102896
  2. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto," 2D Materials and van Der Waals Heterostructures", Science (80-.), vol. 353, 2016.
  3. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, "Recent Advances in Two-Dimensional Materials beyond Graphene," ACS Nano, vol. 9, pp. 11509, 2015. https://doi.org/10.1021/acsnano.5b05556
  4. A. K. Geim and I. V Grigorieva, "Van Der Waals Heterostructures," Nature, vol. 499, pp. 419, 2013. https://doi.org/10.1038/nature12385
  5. Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, "Van Der Waals Heterostructures and Devices," Nat. Rev. Mater., vol. 1, pp. 16042, 2016. https://doi.org/10.1038/natrevmats.2016.42
  6. Y. Liu, Y. Huang, and X. Duan, "Van Der Waals Integration before and beyond Two-Dimensional Materials," Nature, vol. 567, pp. 323, 2019. https://doi.org/10.1038/s41586-019-1013-x
  7. N. Yabuki, R. Moriya, M. Arai, Y. Sata, S. Morikawa, S. Masubuchi, and T. Machida, "Supercurrent in van Der Waals Josephson Junction," Nat. Commun., vol. 7, pp. 10616, 2016. https://doi.org/10.1038/ncomms10616
  8. A. I. Coldea and M. D. Watson, "The Key Ingredients of the Electronic Structure of FeSe," Annu. Rev. Condens. Matter Phys., 2017.
  9. C. I. Kwon, J. M. Ok, and J. S. Kim, "Anisotropic Superconductivity of High Quality FeSe1-x Single Crystal," Prog. Supercond. Cryog., vol. 16, pp. 26, 2014. https://doi.org/10.9714/psac.2014.16.4.026
  10. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, "Electronic and Magnetic Phase Diagram of β-Fe1.01Se with Superconductivity at 36.7K under Pressure," Nat Mater., vol. 8, pp. 630, 2009. https://doi.org/10.1038/nmat2491
  11. J. M. Ok, C. Il Kwon, Y. Kohama, J. S. You, S. K. Park, J. Kim, Y. J. Jo, E. S. Choi, K. Kindo, W. Kang, K.-S. Kim, E. G. Moon, A. Gurevich, and J. S. Kim, "Observation of In-Plane Magnetic Field Induced Phase Transitions in FeSe," Phys. Rev. B, vol. 101, pp. 224509, 2020. https://doi.org/10.1103/PhysRevB.101.224509
  12. Y. Noat, J. A. Silva-Guillen, T. Cren, V. Cherkez, C. Brun, S. Pons, F. Debontridder, D. Roditchev, W. Sacks, L. Cario, P. Ordejon, A. Garcia, and E. Canadell, "Quasiparticle Spectra of 2H-NbSe2: Two-Band Superconductivity and the Role of Tunneling Selectivity," Phys. Rev. B, vol. 92, pp. 134510, 2015. https://doi.org/10.1103/PhysRevB.92.134510
  13. D. J. Rahn, S. Hellmann, M. Kallane, C. Sohrt, T. K. Kim, L. Kipp, and K. Rossnagel, "Gaps and Kinks in the Electronic Structure of the Superconductor 2H-NbSe2 from Angle-Resolved Photoemission at 1 K," Phys. Rev. B, vol. 85, pp. 224532, 2012. https://doi.org/10.1103/PhysRevB.85.224532
  14. T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C. H. L. Quay, and H. Steinberg, "Spectroscopy of Bulk and Few-Layer Superconducting NbSe2 with van Der Waals Tunnel Junctions," Nat. Commun., vol. 9, pp. 598, 2018. https://doi.org/10.1038/s41467-018-03000-w
  15. C.-L. Song, Y.-L. Wang, P. Cheng, Y.-P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.-F. Jia, H.-H. Hung, C. Wu, X. Ma, X. Chen, and Q.-K. Xue, "Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor," Science (80-.), vol. 332, pp. 1410, 2011. https://doi.org/10.1126/science.1202226
  16. M. Kim, G.-H. Park, J. Lee, J. H. Lee, J. Park, H. Lee, G.-H. Lee, and H.-J. Lee, "Strong Proximity Josephson Coupling in Vertically Stacked NbSe2-Graphene-NbSe2 van Der Waals Junctions," Nano Lett., vol. 17, pp. 6125, 2017. https://doi.org/10.1021/acs.nanolett.7b02707
  17. P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, "Observation of Topological Superconductivity on the Surface of an Iron-Based Superconductor," Science (80-.), vol. 360, pp. 182, 2018. https://doi.org/10.1126/science.aan4596
  18. T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, "Unconventional S-Wave Superconductivity in Fe(Se,Te)," Science (80-.), vol. 328, pp. 474, 2010. https://doi.org/10.1126/science.1187399
  19. Y. Bang and G. R. Stewart, "Superconducting Properties of the S±-Wave State: Fe-Based Superconductors," J. Phys. Condens. Matter, vol. 29, pp. 123003, 2017. https://doi.org/10.1088/1361-648X/aa564b