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Abstract 

 
The requirements for powerful computing capability, high capacity, low latency and low 
energy consumption of emerging services, pose severe challenges to the fifth-generation 
(5G) network. As a promising paradigm, mobile edge networks can provide services in 
proximity to users by deploying computing components and cache at the edge, which can 
effectively decrease service delay. However, the coexistence of heterogeneous services and 
the sharing of limited resources lead to the competition between various services for 
multiple resources. This paper considers two typical heterogeneous services: computing 
services and content delivery services, in order to properly configure resources, it is crucial 
to develop an effective offloading and caching strategies. Considering the high energy 
consumption of 5G base stations, this paper considers the hybrid energy supply model of 
traditional power grid and green energy. Therefore, it is necessary to design a reasonable 
association mechanism which can allocate more service load to base stations rich in green 
energy to improve the utilization of green energy. This paper formed the joint optimization 
problem of computing offloading, caching and resource allocation for heterogeneous 
services with the objective of minimizing the on-grid power consumption under the 
constraints of limited resources and QoS guarantee. Since the joint optimization problem is 
a mixed integer nonlinear programming problem that is impossible to solve, this paper uses 
deep reinforcement learning method to learn the optimal strategy through a lot of training. 
Extensive simulation experiments show that compared with other schemes, the proposed 
scheme can allocate resources to heterogeneous service according to the green energy 
distribution which can effectively reduce the traditional energy consumption. 
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1. Introduction 

Nowadays, the advancements in wireless technologies and the popularity of smart 
devices have spawned various emerging applications and heterogeneous services [1–3]. 
Those new applications and services put forward higher requirements on data rate and 
computational capabilities, and at the same time bring explosive mobile traffic, which pose 
a severe challenge to the construction of the next generation mobile network [4-5]. To meet 
strict requirements of heterogeneous services and improve user quality of experience (QoE), 
it is necessary to develop various enabling technologies to improve the utilization of network 
resources. 

Mobile edge computing/cache (MEC) reduces network transmission redundancy and 
delay by developing computing offload and intelligent content cache at mobile network edge, 
which further improving network content distribution efficiency and computing processing 
capacity [6]. As a promising paradigm, Mobile edge computing can enable computation-
intensive tasks with stringent low-latency requirement to be processed with quality of 
service (QoS) guarantee by provide considerable computing resources in proximity to users 
[7-8]. There are many related works, mainly focusing on the joint optimization of offloading 
strategy and resource allocation. For multi-unmanned aerial vehicle (UAV) aided MEC 
system, the authors of [9] propose a reinforcement learning based algorithm to solve the user 
association and resource allocation problem between UAVs and user equipments (UEs), 
while minimizing the energy consumption of all UEs. [10] considers the problem of access 
points (APs) assignment and resource allocation in dynamic scenario, and develops a low-
complexity online scheduling algorithm combining stochastic optimization tools and 
matching theory. Similarly, in order to solve the problem of user association and resource 
allocation between APs and UEs, [11] combines the successive convex approximation 
techniques and matching theory to minimize the total transmit power of UEs under delay 
constraints. [12] decomposes the original problem into task offloading problem and resource 
allocation problem to simplify the solution, and uses the convex optimization theory and 
heuristic algorithm to solve the subproblems respectively. [13] integrate non-orthogonal 
multiple access and introduce quantum behaved particle swarm optimization algorithm to 
solve APs selection and resource allocation, so as to improve system energy efficiency. [14] 
uses the deep reinforcement learning framework to solve the computation offloading 
problem of MEC network, the offloading strategy is optimized to reduce the overhead of 
mobile users. 
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On the other hand, deploying cache in the edge network can enhance content delivery 
networks (CDN) and reducing the data traffic caused by a large number of repeated content 
requests. By analyzing popularity and proactively caching popular content from the core 
network to the network edge in advance, the subsequent requests for the same content can 
be obtained in the edge nodes without duplicate transmissions from remote core network, 
which can reduce transmission delay and alleviate the pressure of backhaul link and core 
network [15]. Edge caching has been widely studied due to the advantages of QOE 
improvement and energy saving. [16] studies the optimization problem of mobile edge 
caching placement and develops a greedy algorithm to reduce the service load of base 
stations while maintaining high QoE for users. [17] proposes a new content-centric 
collaborative edge caching framework, and introduces a vehicle-aided computing and 
caching scheme to schedule the two resources at the same time, which can effectively reduce 
access latency and improve resource utilization. Similarly, [18] proposes a learning -based 
cooperative learning caching (LECC) strategy by incorporating mobile edge computing. 
Firstly, the content popularity is determined by transfer learning, and then the greedy 
algorithm is used to solve the problem of cache content placement optimization, so as to 
improve the content hit rate. The content caching strategy, computation offloading policy 
and resource allocation are optimized simultaneously in [19], and a solution based on actor-
critic reinforcement learning is designed for this joint optimization problem to reduce the 
service delay. 

In addition to intensive computing tasks and concentrated hot contents, 5G network is 
also concerned about the issue of energy consumption, the advocacy of green 5G makes the 
integration of green energy into the energy system become a trend. The hybrid energy supply 
model of traditional power grid combined with green energy and the complementary of 
various energy sources have become research focus [20-21]. Most of the related work in 
MEC minimizes system energy consumption by jointly optimizing resource allocation and 
offloading strategy or cache placement strategy. For example, [22] combines edge 
computing and caching, and applies reinforcement learning to the dynamic allocation of 
virtual network resources to reduce the energy consumption. however, this method has 
limited effect on improving energy efficiency. Significantly improving energy efficiency 
and accelerating the shift from fossil fuels to renewable energy have become the driving 
force for 5G's sustainable development. However, less work has been done to integrate green 
energy into mobile edge computing and caching. 

In this paper, we consider hybrid energy supply pattern and consider two typical 
heterogeneous services in MEC network: content delivery service and computing service 
similar to work [2] and [23]. By sensing the available green energy status of base stations 
and distributing more load to base stations rich in green energy, our goal is to fully utilize 
renewable energy to minimize the on-grid power consumption of system with QoS 
guarantees. Due to the coexistence of heterogeneous services and the sharing of limited base 
stations’ resources, we must consider the joint optimization of offloading decision, cache 
placement and resource allocation at the same time, meanwhile guarantee the latency 
constraint of each service. Since the formulated problem is a mixed integer nonlinear 
programming (MINLP) which is NP-hard, so we designed a deep reinforcement learning 
(DRL) based solution to solve the problem. A large number of simulations show the 
effectiveness of the scheme.  

The rest of the paper is organized as follows. Section 2 describes the system model and 
problem statement. Section 3 presents the proposed scheme in detail. The simulation results 
and conclusions are discussed and given in Section 4 and Section 5. 
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2. System Model and Problem Formulation 
As illustrated in Fig. 1, in our scenario we consider a heterogeneous MEC network 

composed of K  small base stations (SBSs) and one macro station (MBS), the MBS is 
connected to the core network via wired links. Each of SBS is equipped with an edge server 
(ES) and has certain storage capacity to provide services for UEs, the set of SBSs can be 
denoted by { }1,2,..., K=K  . Since MEC network has communication, computing and 
caching functions at the same time, the multi-dimensional resources in the network need to 
be properly configured to expand network capacity, improve network computing capability 
and content delivery rates. the resources of the SBS side can be expressed as 

{ }max max max, ,k k k kR B F S=  , max
kB   is the available bandwidth including uplink bandwidth and 

downlink bandwidth of SBS k  and max
kF is the maximum computing capability which is 

quantified in CPU cycles[24] , max
kS denotes the limited storage capacity of SBS k . We 

assume UEs associated with the same SBS are allocated orthogonal spectrum using 
Orthogonal Frequency Division Multiple Access (OFDMA) thus there's no intra-cell 
interference between UEs in uplink and downlink transmission.  

 
Fig. 1. System model 

 
We assume that there are N  UEs in the network and each UE has a service request that 

needs to be processed. Based on the heterogeneity of services, we divided UEs into two 
categories, denoted as { }0 01, 2,...,=N N  and { }1 0 01, 2,..., N= + +N N N respectively. 
The entire set of UEs can also be represented as { | 0,1}c c= =N N  in a uniform way, where 
the subscript c  indicates the service category, if 0c = represents computing service 
otherwise it represents content delivery service. For simplicity, we call them service 0 and 
service 1 respectively. For service 0, the computing tasks of UE n   can be modeled as 

{ }0 0 0 0,max
0, , ,n n n ntask d T nω= ∀ ∈N , where 0

nd  represents the input data size for computing 
and 0

nω  represents the CPU cycles required to complete the computing task, max
nT   is the 

maximal tolerable delay which require UE’s task to be completed within this time limit. 
Similarly, for service 1 the task of UE n  for the content request can be characterized as 

{ }1 1 1,max
1,n n ntask d T n= ∈， N , 1

nd  is the size of the requested content and 1,max
nT still denotes the 

latency constraint of task. 
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2.1 Computation Model 
For computing service, UEs can choose to execute the task locally or offload to ESs by 

taking advantage of the ESs’ rich computing resource. We use binary variable 
, 0{0,1}, ,n k n kα = ∀ ∈ ∈N K  to represent the offloading decision, , 1n ka =  if UE n  decide to 

associate with SBS k  for offloading and , 0n ka =  otherwise. Assume that each UE can only 

associate with at most one SBS, i.e. , 0
1

1
K

n k
k

a n
=

≤ ∀ ∈∑ ， N  , when , 0
1

=0
K

n k
k

a n
=

∀ ∈∑ ， N it means 

UE choose local execution instead of offloading. If UE process the task locally on the device, 
the local execution delay is the same as device computation delay which can be given as 

0
0 n
n l

n

t
F
ω

= ，where l
nF is the local computing capability. If UE's limited battery capacity or 

computing power cannot support local computing, the UE will upload the task to available 
ESs. The offloading execution delay is composed of transmission delay and computing 
delay, note that since the computing result is usually very small, we only consider the uplink 
transmission delay. The transmission rate for uplink can be given by   

,
, , 2

0 ,

log 1
u

n k nu u
n k n k u

n k

h P
r B

N B
 

= +  
 

                                                                                                  (1) 

where ,
u
n kB is uplink bandwidth allocated to UE n  by SBS k , u

nP  is the transmission power 
of UE n , ,n kh is the channel gain between SBS k  and UE n . Denote ,n kf  as allocated 
computing resource, the total offloading execution delay of UE n  can be calculated by

0 0
0

,,

n n
n u

n kn k

d
t

fr
ω

= + , A more concise way is used to represent the task execution delay of service 

0 UEs like  
0 0 0

0
, ,

1 1,,

( )+ 1-
K K

n n n
n n k n ku l

k kn kn k n

d
t

fr F
ω ω

α α
= =

 = +  
 

∑ ∑                                                                                              (2) 

Since SBSs allocate computing resources for computing UEs’ tasks, which require to 
consume a certain amount of energy, we express the energy consumption of 0

ntask  processed 
by ES k  in one second as ,n kfδ , namely the computing power consumption, in which δ  
denotes the energy consumption per CPU cycle of ES. Therefore, the total computing power 
consumption of the SBS k can be given as 

0

, ,
cmp

k n k n k
n

P fδ α
∈

= ∑
N

                                                                                                              (3) 

2.2 Caching Model 
The mobile edge cache takes SBSs as the intermediate node to cache the popular content 

in advance so as to avoid long-distance transmission and realize content reuse. In order to 
relieve network pressure, pre-caching usually occurs when network is idle. Suppose that 
there are L  types of contents in the network and the content popularity (request probability 
of contents) follows Zipf distribution [25], thus the probability of -thl  type of content being 
independently requested by each UE is  

1

1 ,
1

l L

j

lp l
j

=

= ∀
∑

ò

ò
                                                                                                                (4) 
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where the component ϵ is usually set to be a positive number between 0.5 and 1 [26]. We 
still use ,n kα  to represent the cache decision for service 1, , 1=1n k nα ∈， N indicate that the 
requested content by UE n  has been pre-stored in SBS k  which can be delivered directly 
and , 0n ka =  otherwise. For each type of content, assume that only one SBS can be selected 

for caching, thus , 1
1

=0
K

n k
k

a n
=

∀ ∈∑ ， N  means that the -thl  type of content requested by the 

UE n  is not cached on SBSs and can only be retrieved from the remote core server, the 
requested content must be transferred to SBS via MBS before being delivered to UE. The 
downlink transmission rate from SBS to UE can be given as  

,
, , 2

0

log 1 n k kd d
n k n k

h
r B

N
ρ 

= + 
 

                                                                                                    (5) 

in which ,
d
n kB  is the downlink bandwidth towards UE n  and kρ denotes transmit power-

spectral density which is constant, that is, the transmitted power of each SBS on the unit 
bandwidth is fixed [27]. Note that we assume the content is transferred directly through the 
SBS closest to the UE if the requested content is not cached, therefore, for service 1 the 
content delivery delay can be expressed as 

1 1 1
1

, ,
1 1, ,

+ 1-
K K

n n n
n n k n kd b d

k kn k n k

d d d
t

r r r
α α

= = ′

  = +     
∑ ∑                                                                                  (6) 

where br is the average transmission rate of wireline link and ,
d
n kr ′  represents the 

transmission rate from the nearest SBS k ′ to the UE n [23]. The actual transmitting power 
from SBS k  to UE n  is ,

d
k n kBρ , which is proportional to the allocated bandwidth ,

d
n kB , so 

the total transmitting power of the SBS k  is  
,

k

d d
k k n k

n
P Bρ

∈Θ

= ∑                                                                                                                     (7) 

where kΘ  includes UEs whose content can be delivered directly or need to be forwarded by 
SBS k . When contents are not cached, the power consumption of MBS should also be taken 
into account due to the transmission of data from MBS to SBS. We suppose the power 
allocated to all links with SBSs are the same, i,e. 0p and denote κ  as the number of UEs 
who need to get content from the core network, the total power consumption of MBS can 
be given  

tra 0
0P pκ=                                                                                                                             (8) 
Usually, the cache placement occurs in the period of low network traffic [28], the power 

consumption of popular content pre-caching should also be considered and we set it to be 
proportional to the size of the requested data, that is ld l Lσ ∀ ∈， . Then the total power 
consumption for caching can be given as  

0
cac l

l
l L

P I dσ
∈

= ∑                                                                                                                     (9) 

{ }= 1 0lI ，  is the indicator variable indicating whether the -thl  type of content is cached. One 
content copy can be reused many times, thus the cache power-consumption only needs to 
be calculated once for multiple UEs requesting the same content. Due to the limited storage 
capacity of SBSs, good caching decision should prioritize caching popular content as much 
as possible. 
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2.3 Problem Formulation 
In general, the total power consumption of a SBS includes three parts: static power 

consumption sta
kP , computational power consumption cmp

kP  for service 0 and downlink 
transmission power consumption for service 1.  

sta cmp d
k k k kP P P P= + +                                                                                                            (10) 

Similarly, according to the cache decision, the power consumption of MBS can be divided 
into the power consumption for transmission and cache respectively, namely tra

0P and 0
cacP . 

In our scenario, SBSs are powered by both power grid and green energy in the same time, 
while the MBS is powered by power grid only, the green energy is collected by solar panels. 
Therefore, refer to the green energy acquisition model in [27], the on-grid power 
consumption of BS can be derived as  

( )

tra
0 0+ , 0

max ,0 ,

cac

k
k k

P P k
H

P G k
 ==  − ∈ K

                                                                                            (11) 

0H  is the on-grid power consumption of MBS and kG  is the green energy generation rate 
of SBS k .The total on-grid power consumption of the system can be obtained as follows: 

=0

K

total k
k

H H= ∑                                                                                                                     (12) 

The decision matrix for computing offloading of service 0 and cache placement of service 
1can be denoted as ,{ , , }n kA a n k= ∀ ∈ ∈N K . Once A  is determined, the association 
scheme of heterogeneous UEs is also determined. Similarly, the bandwidth including uplink 
and downlink allocated to UEs can be written as { }, 0, ,u u

n kB B n k= ∀ ∈ ∈N K and 

{ }, , ,d d
n k kB B n k= ∀ ∈Θ ∈K , the allocated computing resources can also be expressed as 

{ }, 0, ,n kF f n k= ∀ ∈ ∈N K . In heterogeneous services situation, the contention between two 
services for common resources should be considered. Based on that, we formed the 
following optimization problem to optimize user association so that UEs can choose green 
energy-rich SBSs as much as possible to provide services. In order to improve the utilization 
of green energy, the on-grid power consumption of the whole system is minimized under 
the constraints of limited resources and time delay.  

, , ,
min

u d total
A F B B

H=P                                                                                                                (13) 

s.t. C1: , {0,1}, ,n k n kα = ∀ ∈ ∈N K                                                                                                                   

C2: , 1,n k
k

nα
∈

≤ ∈∑
K

N  

C3: c,max , {0,1},c
n nt T c n≤ ∀ ∈ ∈N  

C4: 
0
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, , ,n k n k k

n
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, , ,u u

n k n k k
n

B B kα
∈
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C6: ,max
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C7: max
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B P kρ
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≤ ∀ ∈∑ K  
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C8: 
1

max
,

0
,

c

c
n k n k

c n
d S kα

= ∈

≤ ∀ ∈∑ ∑
N

K  

The constraint C1 restricts the offloading decision and caching decision of two 
heterogeneous services and C2 indicates that each UEs with service 0/1 can only be served 
by one SBS. Constraint C3 ensures that the service delay is tolerable. Constraint C4-C6 
guarantee that the resources (bandwidth resource and computing resource) allocated to UEs 
are non-negative and do not exceed the total amount of resources of the SBSs. C7-C8 ensure 
that the maximum transmitting power limit and storage capability allowance of SBSs are 
not exceeded. Note that both constraint C6 and C7 are essentially restrictions on the 
downlink bandwidth, so we can merge the two constraints as follows 

C9：
max

,max
, min , ,

k

d dk
n k k

n k

P
B B k

ρ∈Θ

 
≤ ∀ ∈ 

 
∑ K                                                                         (14) 

3. Proposed Algorithm  
The formulated problem is complicated due to the coupling of user association and 

resource allocation. In this part, we designed a DRL-based scheme and solve the above 
problem in two stages for simplicity. First, we determine the offload decision and cache 
decision, and then we fine-tune the allocation of resources. Considering the latency 
constraint of heterogeneous services, it is necessary to allocate at least a certain amount of 
resources to UEs to meet the QOS assurance. For UEs with service 1, the delay is only 
related to the downlink bandwidth. Therefore, according to Eq. (2) the downlink bandwidth 
allocated to UE n  for content delivery should satisfy min

, ,
d d
n k n kB B≥ ， , the minimum downlink 

bandwidth required for content transmission can be given as 

( )

1
min

, 1
,1,max

, 2
0

- 1- log 1

d n
n k

n k kn
n n k b

d
B

hdT a
Nr
ρ′ ′

=
   

+       

，                                                                       (15) 

which contains two cases: the required content is cached or not be cached. For UEs with 
service 0, however, the delay is composed of transmission time and computation time which 
are determined respectively by the given uplink bandwidth and computing resources, thus 
the allocation of both resources need to be considered simultaneously. Here, we divided the 
uplink bandwidth of SBSs in proportion to the task size of associated UEs in the first stage 
like 

0

0 ,max

, 0
,

d
u n k
n k

n k n
n

d B
B

dα ′ ′
′∈

=
∑

N

                                                                                                              (16) 

and then carried out more elaborate resource allocation in the second stage under the 
condition that part of constraints have been met. Therefore, given the uplink bandwidth 
allocation, the delay budget for computation can be obtained, so the computing resources 
should satisfy min

, ,n k n kf f≥  at least, min
,n kf can be given as follows 

0
min
, 0

0,max

,

= n
n k

n
n u

n k

f
dT
r

ω

−
                                                                                                              (17) 
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In the first stage, we make a rough allocation of resources according to Eq. (15) ~ Eq. 
(17), and then use DRL model to determine user association, the detailed definition of the 
three elements of DRL can be given as follow, i.e., states, actions and reward functions. 

1) States: The state consists of two parts: total on-grid power consumption totalH  and the 
proportion of SBSs exceeding the resource budget ( ), ,B F Sτ τ τ , which are the ratios of SBSs 
that do not meet the constraint C9, C4 and C8 respectively. The reason we don't monitor the 
uplink bandwidth usage of the SBSs is that we fixed the allocation in the first stage as shown 
in Eq. (18). 

( ), , ,total B F Ss H τ τ τ=                                                                                                            (18) 
2) Actions: For heterogeneous services, if SBS k  is selected by UE n  to execute 

computing task or cache the desired file, then take action ka  which corresponds to , 1n kα = ; 
Otherwise, if UE n  chooses to compute task locally or get the desired content directly from 
the core network without caching then take action 0a , which corresponds to , 0n k kα = ∀ ∈， K . 
The action set can be expressed as 

0 1{ , , , }Ka a aρ = …                                                                                                               (19) 
3) Reward Function: Since the optimization goal is to reduce system on-grid power 

consumption, by making reward function negatively correlated with the power consumption, 
we realized the transformation of the original problem. Moreover, for the action collection 
which exceeds SBSs’ resource budget, σ  is set to a larger value to give a certain penalty, 
which ensure that the model can continuously reduce the on-grid power consumption while 
satisfy the resource limit as much as possible in the optimization process. Here, we 
severely penalize the overallocation of downlink bandwidth and storage by setting a large 
value of σ  while setting a small value of δ  imposes a smaller penalty for overallocation of 
computing resources, because in the second stage, we will reallocate computing resources 
and uplink bandwidth.  

( )
1

+ + +total B S F

r
H σ τ τ δτ

=                                                                                                   (20) 

 
Table 1. Deep reinforcement learning based association algorithm 

Initialize: replay memory to capacity ,action-value function  with random weights , 

 target action-value function with random weights , UEs’ state . 
while  

for  
    if  
        Select an action a  randomly from ρ  for the n-th UE  
    else 
        Select an action ( )argmax , ;

a
a Q s a

ρ∈
= θ  for the n-th UE 

    end if 
Allocate bandwidth and computing resources in Eq. (15) ~ Eq. (17) according to UEs’ action  
Obtain reward ( Eq. (20)), get new state and store the new sample ( ), , ,s a r s′  in  
update state  
Sample random minibatch of samples ( )1, , ,j j j js a r s + from  

Set ( )1max , ;j j a jy r Q s aγ θ
∧

−
′ + ′= +  

D 1C Q θ

Q
∧

- =θ θ s
maxξ ξ≤

1:n N=

( )0,1rand ε<

r s′ D

s s′=

D
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Perform a gradient descent step on ( )
2

, ;j j jy Q s a θ − 
 

with respect to the network parameters  

Every steps reset  
end for 

 
end while 
The decision matrix  can be determined from the action collection of all UEs 

 

It should be noted if 
0

0 maxn
nl

n

T
F
ω

≤ ，  UEs with service 0 can only choose to offload its task. 

The detailed implementation of the DRL-based algorithm is illustrated in Tab. 1, we 
initialize the model parameters at first. Then, at each training episode, UEs are required 
to select an action according to the -greedyε  policy [29]. Once the collection of all UEs’ 
action is obtained, we allocate bandwidth and computing resources according to Eq. (15) ~ 
Eq. (17). After getting rewards r  and new states s′ , we store the new sample ( ), , ,s a r s′ and 
take a random sample from D  to update the parameters θ  of Q network. At the same time, 
the target Q network - =θ θ  is updated every E  steps. Repeat the above process until the 
maximum episode we set is reached. With the increase of training episodes the algorithm 
gradually converges, and finally we get the action collection which can reduce the on-grid 
power consumption of system. 

In the second stage, we divide resources more finely to improve service performance 
for UEs with service 0. For service 1, its power consumption mainly comes from content 
transmission and pre-caching of popular content, moreover the downlink transmission 
power from SBS to UE is proportional to the allocated downlink bandwidth ,

d
n kB  as shown 

in Eq. (7). In the first stage, we set the downlink bandwidth ,
d
n kB  to the minimum value in 

Eq. (15) that can satisfy UE's delay constraint, and strictly punish the excessive allocation 
of resources through the reward function, so as to restrict the total downlink bandwidth 
allocated by SBSs within the budget. Therefore, once the first stage is over, which indicates 
that under the current caching decision and offloading decision, the allocation of downlink 
bandwidth can meet the delay requirement while minimize the downlink transmission power, 
so we still retain the downlink bandwidth allocation scheme of the first stage and omit 
constraints C6 and C7. In addition, once caching decision and offloading decision are 
determined, UEs with different service served by which SBS can also be determined. 
Therefore, the three part of power consumption of service 1 as shown in Eq. (7) ~ Eq. (9) is 
fixed in the second stage, according to Eq. (10) ~ Eq. (11), the expression of the on-grid 

power consumption for BS can be changed to ( )
0 , 0

max ,0 ,k cmp
k k

C k
H

P C k

==  − ∈ K
，where 

{ }0kC k ∈， ，K  is constant. In the same way, the reward function also penalizes the 
decision that exceeds the storage capacity of SBSs, so it can ensure that the final user 
association scheme meets constraint C8. In conclusion, the original problem can be 
degenerate to 

1
,

min
u

cmp
kkF B

P
∈

= ∑ K
P                                                                                                             (21) 

s.t. C1: 0 0,max ,n nt T n≤ ∈N  

θ

E Q Q
∧

=

1ξ ξ= +

A
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C2: 
0

max
, , ,n k n k k

n
f F kα

∈

≤ ∀ ∈∑
N

K  

C3: 
0

,max
, , ,u u

n k n k k
n

B B kα
∈

≤ ∀ ∈∑
N

K  

According to Eq. (3), the computing power consumption of SBSs depends only on the 
computing resources allocated to associated UEs. The problem 1P  can be easily solved by 
Lagrange multiplier method. 

4. Simulation Results 

In this section, we compare the proposed scheme with other schemes to evaluate the 
performance of the proposed scheme from different perspectives. In the simulation, the 
channel pathloss model [ ] [ ]10dB =140.7+36.7log kmL d = is considered with reference to [30]. 
We consider a single cell covered with 400m 400m× , the MBS is located in the center of the 
cell, SBSs and UEs are randomly distributed in this space. We assume that the proportion 

of UEs with heterogeneous service is same, i.e, 0 1= =
2
NN N . For service 0, the size of the 

input data and the number of CPU cycles required to perform the computing task are 
uniformly distributed between [100,1000]KB and [108,109]cycles respectively, and the size 
of the requested content for service 1 also follow the uniform distribution within the range 
[4, 8]MB. As for the maximum allowable delay of UE’s tasks, we set both heterogeneous 
services in the range of [1,2]s. The uplink transmission power u

nP  and the computing 
capacity of local CPU l

nF  are set to 100mW and 0.5GHz, other network parameters are 
shown in Tab. 2. For DRL model parameters, we set ε -greedy policy probability and reward 
decay to 0.9, learning rate to 0.01 and the maximum episode max =10000ξ , as for the penalty 
factors σ  and δ  in Eq. (20), we set them as 1000 and 100 respectively. The simulation 
results are averaged by multiple experiments. 

Table 2. Simulation parameters setting  
Parameters Settings 

The maximum CPU computing capability of SBS max
kF  [6,8]GHz 

Total available bandwidth of SBS max
kB  10MHz 

Total storage capacity of SBS max
kS  [1,2]GB 

Maximum transmitting power of SBS max
kP  35dBm 

Energy consumption per CPU cycle of SBS δ  1 W/GHz 
Power consumption per Mb for pre-caching σ  0.05W/Mb 

Transmit power-spectral density of SBS kρ  0.2uW/HZ 
The static power consumption of SBS sta

kP  33W 

The average wireline transmission rate  br  1Gbps 

Allocated power to links with SBSs 0p   1W 
Green energy generation rate of SBS kG  [35,40]W 
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As mentioned above, the proposed scheme uses DRL-based algorithm to determine the 
offloading decision and caching decision, and allocate resources at the same time. As a 
comparison, we use other strategies to obtain the offloading decision and caching decision 
respectively. For the offloading decision we adopt SNR-based offloading strategy, if the 
local computation fails to meet the delay requirements, the nearby SBSs are selected for 
offloading according to the channel quality status, i.e. signal-noise ratio (SNR). As for 
caching decision, we adopt random caching strategy which means SBSs are randomly 
selected to cache the requested content without consideration of the content popularity, note 
that the storage capacity of the SBSs should not be exceeded. The proposed scheme and 
comparison schemes are elaborated as follows: 
 DRL-based offloading strategy and caching strategy (DODC): DODC scheme uses 

the proposed DRL-based algorithm described in tab. 1 to determine the offloading 
decision and caching decision, and then allocate resources by solving 1P  as shown in 
Eq. (21). 

 SNR-based offloading strategy and DRL-based caching strategy (SODC): SODC 
scheme uses the above-mentioned SNR-based offloading strategy to determine the 
offloading decision instead of the DRL-based offloading strategy in DODC scheme, 
while the caching strategy and the resource allocation is the same as the DODC scheme. 

 DRL-based offloading strategy and random caching strategy (DORC): DORC 
scheme uses the above-mentioned random caching strategy to determine the caching 
decision, the offloading strategy and resource allocation is the same as the DODC 
scheme. 

 SNR-based offloading strategy and random caching strategy (SORC): SORC 
scheme uses SNR-based offloading strategy and random caching strategy to determine 
the offloading decision and caching decision respectively. 
Fig. 2 and Fig. 3 show the influence of the number of UEs and SBSs to the system on-

grid power consumption for four schemes. In Fig. 2 the number of SBSs K is set to 4, it can 
be seen that with the increase of the number of UEs N , the on-grid power consumption of 
four schemes basically presents an increasing trend, but the proposed scheme DODC is 
obviously superior to the other three comparison schemes. In addition, the figure shows that 
when the number of UEs is small, the on-grid power consumption of DODC is 0, and then 
presents a slow growth trend. This is because the proposed scheme can distribute the traffic 
load according to the green energy status of SBSs, which make UE’s tasks consume as much 
green energy as possible thus the on-grid power consumption can be reduced. As a result, 
at the beginning, SBSs' green energy is enough to support the completion of UE’s service 
requests, so the on-grid power consumption is 0. Then, after the green energy is exhausted, 
the proposed scheme can also adjust the association strategy to make the on-grid power 
consumption as small as possible. 
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Fig. 2. System on-grid power computation of four schemes versus the number of UEs 

 
Similarly, in Fig. 3 we fixed the number of UEs N  at 40 and gradually increased the 

number of SBSs K starting from 1. As expected, the system on-grid power consumption of 
DODC is gradually reduced to 0 with the increase of SBSs, this is because the number of 
UEs is fixed and more SBSs bring more green energy, the proposed DODC scheme can 
effectively distribute load to make full use of the green energy in the network to reduce the 
on-grid power consumption. Therefore, it can be seen that the on-grid power consumption 
of the system is actually negatively correlated with the number of SBSs, the effectiveness 
of DODC in energy saving can also be demonstrated by Fig. 3. 

 
Fig. 3. System on-grid power computation of four schemes versus the number of SBSs 
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We define the load balancing index 
( )

( )

2

2

kk

kk

H

K H
ς ∈

∈

=
∑
∑

K

K

 to measure the load distribution 

of different SBSs. Fig. 4 illustrates the load balancing performance of different schemes 
with different number of UEs. According to the results, it can be seen that the load balancing 
performance of the proposed scheme DODC is better than the comparison scheme, which 
can effectively distribute the load to each SBS to reduce the total on-grid power consumption 
of the system. 

 
Fig. 4. Load balancing index of four schemes versus the number of UEs 

5. Conclusions 
In this article, we consider two typical heterogeneous service and hybrid energy supply 

pattern, and study the user association and resource allocation problem of a two-tier 
heterogeneous cellular network. Both computing offloading and content caching need to 
consume the power of BS, user association needs to perceive the status of green energy and 
make the green energy-rich SBSs bear more traffic load as far as possible to reduce traditional 
energy consumption. Therefore, the joint optimization problem of offloading decision, caching 
decision, computing resource and bandwidth allocation is formulated to minimize the on-grid 
power consumption of system with QOS guarantees. Since the above problem is NP-hard, we 
propose a DRL-based scheme to solve it in two stages. The first stage is to determine the 
optimal association assignment based on the offloading decision and caching decision, and 
then in second stage we make a more elaborate allocation of resources. The simulation results 
show that DODC scheme has good performance in reducing on-grid power consumption, and 
has good load distribution ability which can effectively balance the load.  
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