DOI QR코드

DOI QR Code

Assessment of Fire Risk Rating for Wood Species in Fire Event

화재 발생 시 목재 수종의 화재위험성 등급 평가

  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2021.05.30
  • Accepted : 2021.06.18
  • Published : 2021.08.10

Abstract

In order to evaluate the fire risk and fire risk rating of wood for construction materials, this study focused on fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) according to Chung's equations-III and -IV. Western red cedar, needle fir, ash, and maple were used as the specimens. The fire characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment on the specimen. The FPI-III measured after the combustion reaction was 0.86 to 12.77 based on polymethylmethacrylate (PMMA). The FGI-III was found to be 0.63 to 5.26 based on PMMA. The fire rating according to the FRI-IV, which is the fire rating index, was 0.05 to 6.12, and the western red cedar was 122.4 times higher than that of the maple. The fire risk rating according to the FRI-IV increased in the order of maple, ash, needle fir, PMMA and western red cedar. The CO peak concentration of all specimens was measured as 103 to 162 ppm, and it was 2.1 to 3.2 times higher than 50 ppm, the permissible exposure limits of the US occupational safety and health administration. Materials such as western red cedar, which have a low bulk density and contain a large amount of volatile organic substances, have a low FPI-III and a high FGI-III, so they have a high fire risk rating.

본 연구는 건자재용 목재의 화재위험성 및 화재위험성 등급을 평가하기 위하여 Chung's equations-III, -IV에 의한 화재성능지수-III (FPI-III), 화재성장지수-III (FGI-III), 화재위험성지수-IV (FRI-IV)를 중심으로 조사하였다. 시험편은 적삼목, 전나무, 물푸레나무, 단풍나무를 사용하였다. 화재 특성은 시험편에 대하여 콘칼로리미터(ISO 5660-1) 장비를 이용하여 조사하였다. 연소반응 후 측정된 FPI-III는 polymethylmetacrylate (PMMA) 기준으로 0.86~12.77로 나타났다. FGI-III는 PMMA를 기준으로 0.63~5.26으로 나타났다. 화재위험성 등급 지수인 FRI-IV에 의한 화재 등급은 0.05~6.12였으며 적삼목이 단풍나무와 비교하여 122.4배 높았다. FRI-IV에 의한 화재위험성 등급은 단풍나무, 물푸레나무, 전나무, PMMA, 적삼목 순서로 증가하였다. 모든 시편의 CO 피크농도는 103~162 ppm으로 측정되었으며 미국직업안전위생관리국(occupational safety and health administration)의 허용기준(permissible exposure limits)인 50 ppm보다 2.1~3.2배 높게 나타났다. 적삼목과 같이 체적밀도가 작고 휘발성 유기물질을 다량 함유한 소재는 FPI-III가 낮고 FGI-III가 높으므로 화재위험성 등급이 높은 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 2018년도 강원대학교 대학회계 학술연구조성비 연구(No. 620180015) 및 일부 2019년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 기초 연구사업(No. NRF-2019R1F1A1059320)입니다.

References

  1. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Analysis in Polymer Flammability, Chap. 8, Thermal characterization of polymeric materials, Academic Press, New York, USA (1981).
  2. M. Gao, K. Zhu, and Y. J. Sun, Thermal degradation of wood treated with amino resins and amino resins modified with phosphate in nitrogen, J. Fire Sci., 22, 505-515 (2004). https://doi.org/10.1177/0734904104043031
  3. M. Gao, C. Y. Sun, and K. Zhu, Thermal degradation of wood treated with guanidine compounds in air: Flammability study, J. Therm. Anal. Calorim., 75, 221-232 (2004). https://doi.org/10.1023/B:JTAN.0000017344.01189.e5
  4. N. Boonmee and J. G. Quintiere, Glowing ignition of wood: the on set of surface combustion, Proc. Combust. Inst., 30, 2303-2310 (2005). https://doi.org/10.1016/j.proci.2004.07.022
  5. M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf. J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  6. M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf. J., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  7. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrol., 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  8. K. Li, D. Pau, J. Wang, and J. Ji, Modelling pyrolysis of charring materials: determining flame heat flux using bench-scale experiments of medium density fibreboard (MDF), Chem. Eng. Sci., 123, 39-48 (2015). https://doi.org/10.1016/j.ces.2014.10.043
  9. L. Terrei, Z. Acem, P. Lardet, P. Boulet, and G. Parent, Study of wood self-extinguishment with a double sliding cone calorimeter, Fire Saf. J., 122, 103316 (2021). https://doi.org/10.1016/j.firesaf.2021.103316
  10. F. Z. Brahmia, K. Zsolt, P. G. Horvath, and T. L. Alpar, Comparative study on fire retardancy of various wood species treated with PEG 400, phosphorus, and boron compounds for use in cement-bonded wood-based products, Surf. Interfaces, 21, 100736-100747 (2020). https://doi.org/10.1016/j.surfin.2020.100736
  11. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  12. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf. J., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  13. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  14. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  15. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021). https://doi.org/10.14478/ACE.2020.1103
  16. W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA, 1-21 (1987).
  17. J. D. Dehaan, Kirk's Fire Investigation (Fifth Ed.), 84-112, Pearson, London, England (2002).
  18. M. A. Buchanan, The ignition temperature of certain pulps and other wood components, TAPPI, 35, 209-211 (1952).
  19. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, USA (1998)
  20. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  21. B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007). https://doi.org/10.1002/fam.949
  22. J. Pohleven, M. D. Burnard, and A. Kutnar, Volatile organic compounds emitted from untreated and thermally modified wood-a review, Wood Fiber Sci., 51, 231-254 (2019). https://doi.org/10.22382/wfs-2019-023
  23. V. Babrauskas, Development of the cone calorimeter - A bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
  24. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033
  25. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  26. A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  27. R V. Burg, Toxicology update, J. Appl. Toxicol., 19, 379-386 (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  28. OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  29. U. C. Luft, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  30. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final rule on air comments project, OHSA's Comments, January 19 (1989).