Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1009926). This Research has been performed a by the Industrial Strategic Technology Development Program-Strategic core material Independent technology development project (20010193, Development of Electrode Fabrication Technology using Pitch for MCDI System Applied to Lithium Recovery from Low Grade Brine and Waste Solution and Manufacturing Technology of Lithium Compound for anode material of Lithium secondary batteries) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
References
- M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci., 7, 867-884 (2014). https://doi.org/10.1039/c3ee43526a
- H. Hu, Z. Pei, and C. Ye, Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage, Energy Storage Mater., 1, 82-102 (2015). https://doi.org/10.1016/j.ensm.2015.08.005
- T. Lv, M. Liu, D. Zhu, L. Gan, and T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors, Adv. Mater., 30, 1705489-1705505 (2018). https://doi.org/10.1002/adma.201705489
- A. Tyagi, K. M. Tripathi, and R. K. Gupta, Metal-organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation, J. Mater. Chem. A, 3, 22507-20613 (2015). https://doi.org/10.1039/C5TA04675K
- N. A. Kyeremateng, T. Brousse, and D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol., 12, 7-15 (2017). https://doi.org/10.1038/nnano.2016.196
- D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, and D. Guay, Influence of the configuration in planar interdigitated electrochemical micro-capacitors, J. Power Sources, 230, 230-235 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.039
- J. Zhang, G. Zhang, T. Zhou, and S. Sun, Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications, Adv. Funct. Mater., 30, 1910000-1910020 (2020). https://doi.org/10.1002/adfm.201910000
- N. Liu and Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small, 13, 1701989-1701998 (2017). https://doi.org/10.1002/smll.201701989
- D. Qi, Y. Liu, Z. Liu, L. Zhang, and X. Chen, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater., 29, 1602802-1602840 (2017). https://doi.org/10.1002/adma.201602802
- D. Aradilla, M. Delaunay, S. Sadki, J.-M. Gerard, and G. Bidan, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19254-19253 (2015). https://doi.org/10.1039/C5TA03471J
- P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, in nanoscience and technology: A collection of reviews from nature journals, World Scientific, 320-329, (2010).
- N. R. Chodankar, H. D. Pham, A. K. Nanjundan, J. F. S. Fernando, K. Jayaramulu, D. Golberg, Y. K. Han, and D. P. Dubal, True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors, Small, 16, 2002806-2002840 (2020). https://doi.org/10.1002/smll.202002806
- M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, A review on phase change energy storage: Materials and applications, Energy Convers. Manage., 45, 1597-1615 (2004). https://doi.org/10.1016/j.enconman.2003.09.015
- R. Srinivasan, E. Elaiyappillai, E. J. Nixon, I. Sharmila Lydia, and P. M. Johnson, Enhanced electrochemical behavior of Co-MOF/PANI composite electrode for supercapacitors, Inorg. Chim. Acta, 502, 119393-119403 (2020). https://doi.org/10.1016/j.ica.2019.119393
- E. Payami, R. Teimuri-Mofrad, I. Ahadzadeh, and R. Mohammadi, A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance super-capacitor, Electrochim. Acta, 354, 136712-136724 (2020). https://doi.org/10.1016/j.electacta.2020.136712
- P. Du, Y. Dong, H. Kang, J. Li, J. Niu, and P. Liu, Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors, J. Power Sources, 449, 227477-227489 (2020). https://doi.org/10.1016/j.jpowsour.2019.227477
- K. Gholami Laelabadi, R. Moradian, and I. Manouchehri, One-step fabrication of flexible, cost/time effective, and high energy storage reduced graphene oxide@PANI supercapacitor, ACS Appl. Energy Mater., 3, 5301-5312 (2020). https://doi.org/10.1021/acsaem.0c00317
- S. Yu, B. Patil, and H. Ahn, PANI//MoO3 fiber-shaped asymmetric supercapacitors with roll-type configuration, Fibers Polym., 21, 465-472 (2020). https://doi.org/10.1007/s12221-020-9811-1
- M. Z. Iqbal, M. M. Faisal, S. R. Ali, S. Farid, and A. M. Afzal, Co-MOF/polyaniline-based electrode material for high performance supercapattery devices, Electrochim. Acta, 346, 136039-136040 (2020). https://doi.org/10.1016/j.electacta.2020.136039
- T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen, X. Lu, Y. Wang, and X. Guo, High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes, Dalton Trans., 49, 3304-3311 (2020). https://doi.org/10.1039/D0DT00100G
- R. Awata, M. Shehab, A. El Tahan, M. Soliman, and S. Ebrahim, High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite, Electrochim. Acta, 347, 136229-136242 (2020). https://doi.org/10.1016/j.electacta.2020.136229
- Y. Shen, Z. Qin, S. Hu, L. Yang, X. Xu, L. Ding, and Y. Zhang, In-situ hybridization of graphene sheets onto polyaniline nanofiber arrays grown on the surface of carbon cloth under high electric voltage field for high-performance flexible supercapacitor, Carbon, 158, 711-718 (2020). https://doi.org/10.1016/j.carbon.2019.11.045
- L. Sun, X. Wang, W. Liu, K. Zhang, J. Zou, and Q. Zhang, Optimization of coplanar high rate supercapacitors, J. Power Sources, 315, 1-8 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.019
- Y. Chen, X. Li, Z. Bi, G. Li, X. He, and X. Gao, Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors, Chem. Eng. J., 353, 499-506 (2018). https://doi.org/10.1016/j.cej.2018.07.158
- J. Yun, D. Kim, G. Lee, and J. S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes, Carbon, 79, 156-164 (2014). https://doi.org/10.1016/j.carbon.2014.07.055
- B. Shen, J. Lang, R. Guo, X. Zhang, and X. Yan, Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MoO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces, 7, 25378-25389 (2015). https://doi.org/10.1021/acsami.5b07909
- R. Guo, J. Chen, B. Yang, L. Liu, L. Su, B. Shen, and X. Yan, In-plane micro-supercapacitors for an integrated device on one piece of paper, Adv. Funct. Mater., 27, 1702394-1702404 (2017) https://doi.org/10.1002/adfm.201702394
- J. Li, S. S. Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng, and M. Ostling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing, ACS Nano, 11, 8249-8256 (2017). https://doi.org/10.1021/acsnano.7b03354
- S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, and X. Zhao, Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors, J. Mater. Chem. A, 2, 18125-18131 (2014). https://doi.org/10.1039/C4TA03192J