DOI QR코드

DOI QR Code

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries

리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성

  • Kim, Eunji (School of Chemical Engineering, Pusan National University) ;
  • Lee, Albert S. (Materials Architecturing Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jin Hong (School of Chemical Engineering, Pusan National University)
  • 김은지 (부산대학교 공과대학 응용화학공학부) ;
  • 이성수 (한국과학기술연구원 물질구조제어연구센터) ;
  • 이진홍 (부산대학교 공과대학 응용화학공학부)
  • Received : 2021.07.13
  • Accepted : 2021.07.19
  • Published : 2021.08.10

Abstract

A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

본 연구에서는 가교성 작용기가 기능화된 사다리형 폴리실세스키옥산(LPMA64)을 합성하였고, 이를 액상 전해질의 열 가교 공정에 활용하여 유기-무기 하이브리드 겔 고분자 전해질을 제조하였다. 5 wt%의 낮은 LPMA64 고분자 가교제 함량으로도 전해질 내 네트워크 구조가 잘 발달하여, 우수한 형태 안정성과 높은 이온 전도도를 가지는 전해질의 제조가 가능하였다. 하이브리드 겔 고분자 전해질이 적용된 리튬-황 전지는 안정적인 율속과 장수명 성능 및 높은 쿨롱 효율을 나타냈으며, 이는 완화된 리튬 폴리설파이드 셔틀 현상에 기인했다. 본 연구결과는 제조된 유기-무기 하이브리드 겔 고분자 전해질이 리튬-황 전지 응용에 유망한 전해질임을 보여주었다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(2019R1G1A110012213)과 2018학년도 부산대학교 신임교수연구 정착금 지원으로 이루어졌음

References

  1. D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. chem., 7, 19-29 (2015). https://doi.org/10.1038/nchem.2085
  2. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev., 114, 11751-11787 (2014). https://doi.org/10.1021/cr500062v
  3. Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 42, 3018-3032 (2013). https://doi.org/10.1039/c2cs35256g
  4. Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem. Int. Ed., 52 13186-13200 (2013). https://doi.org/10.1002/anie.201304762
  5. Y. Zhao, Y. Zhang, D. Gosselink, M. Sadhu, H.-J. Cheang, P. Chen, Polymer electrolytes for lithium/sulfur batteries, Membranes, 2, 553-564 (2012). https://doi.org/10.3390/membranes2030553
  6. Q. Yang, N. Deng, J. Chen, B. Cheng, W. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries, Chem. Eng. J., 127427 (2020).
  7. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects, Chem, 5, 2326-2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
  8. M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S. H. Siyal, X. Yang, G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries, J. Energy Chem., 37, 126-142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
  9. A.M. Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J., 42, 21-42 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
  10. S. O. Hwang, A. S. Lee, J. Y. Lee, S.-H. Park, K. I. Jung, H. W. Jung, J.-H. Lee, Mechanical properties of ladder-like polysilsesquioxane-based hard coating films containing different organic functional groups, Prog. Org. Coat., 121, 105-111, (2018). https://doi.org/10.1016/j.porgcoat.2018.04.022
  11. A. S. S. Lee, J. H. Lee, J.-C. Lee, S. M. Hong, S. S. Hwang, C. M. Koo, Novel polysilsesquioxane hybrid polymer electrolytes for lithium ion batteries, J. Mater. Chem. A, 2, 1277-1283 (2014). https://doi.org/10.1039/C3TA14290F
  12. A. S. Lee, J. H. Lee, S. M. Hong, J.-C. Lee, S. S. Hwang, C.M. Koo, Ion conduction behaviour in chemically crosslinked hybrid ionogels: effect of free-dangling oligoethyleneoxides, RSC Adv., 5, 94241-94247 (2015). https://doi.org/10.1039/C5RA18856C
  13. J. H. Lee, A. S. Lee, J.-C. Lee, S. M. Hong, S. S. Hwang, C.M. Koo, Hybrid ionogel electrolytes for high temperature lithium batteries, J. Mater. Chem. A, 3, 2226-2233 (2015). https://doi.org/10.1039/C4TA06062H
  14. S.-J. Kwon, D.-G. Kim, J. Shim, J.H. Lee, J.-H. Baik, J.-C. Lee, Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly (ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures, Polymer, 55, 2799-2808 (2014). https://doi.org/10.1016/j.polymer.2014.04.051
  15. M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H. Yang, Z. Lin, Novel gel polymer electrolyte for high-performance lithium-sulfur batteries, Nano Energy, 22, 278-289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
  16. J. H. Lee, J. Kang, S.-W. Kim, W. Halim, M. W. Frey, Y. L. Joo, Effective suppression of the polysulfide shuttle effect in lithium-sulfur batteries by implementing rGO-PEDOT: PSS-coated separators via air-controlled electrospray, ACS Omega, 3, 16465-16471, (2018). https://doi.org/10.1021/acsomega.8b02551
  17. A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu, Y. Lin, M. Wang, X. Li, Lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium-sulfur battery, J. Memb. Sci., 556, 203-213 (2018). https://doi.org/10.1016/j.memsci.2018.04.003