DOI QR코드

DOI QR Code

Metal Foam Flow Field Effect on PEMFC Performance

금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2021.06.24
  • Accepted : 2021.07.07
  • Published : 2021.08.10

Abstract

Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

고분자전해질 연료전지에서 분리판 유로 형상은 유체 공급과 물 및 열 확산, 접촉 저항 등에 영향을 주는 중요한 요소이다. 본 연구에서는 25 cm2 단위 전지를 이용하여 공기극에 구리폼을 적용한 분리판을 이용하여 연료전지 성능 평가를 수행하였다. 압력과 상대습도 조건에 대한 영향을 분극 곡선과 전기화학적 임피던스 분광법을 이용하여 분석하였다. 구리폼의 ohmic 저항이 높아 사형유로형상 보다 연료전지 성능은 낮았지만, 다공성 구조로 인한 균일한 연료 분포로 활성화 손실과 물질전달 손실이 적은 것을 확인하였다. 구리폼의 소수성이 높아 물 배출이 유리한 장점이 있지만, 저가습 조건에서는 사형유로에 비하여 전해질막 수화도가 낮은 것을 확인하였다. 다공성 금속 분리판은 균일한 압력 분포와 효과적인 수분 배출로 연료전지 성능을 개선할 수 있을 것으로 판단되며, 저항을 최소화할 수 있도록 금속폼의 물성에 대한 연구가 수행되어야 할 것이다.

Keywords

Acknowledgement

이 논문은 2019년 울산대학교 연구비에 의하여 연구되었음.

References

  1. X. Yu and S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst, J. Power Sources, 172, 145-154 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.048
  2. Y. Yu, H. Li, H. Wang, X. Z. Yuan, G. Wang, and M. U. Pan, A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies, J. Power Sources, 205, 10-23 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.059
  3. H. Yano, M. Watanabe, A. Iiyama, and H. Uchida, Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 29, 323-333 (2016). https://doi.org/10.1016/j.nanoen.2016.02.016
  4. J. Wang, H. Wang, and Y. Fan, Techno-Economic Challenges of Fuel Cell Commercialization, Engineering, 4, 352-360 (2018) https://doi.org/10.1016/j.eng.2018.05.007
  5. Y. Leng, P. Ming, D. Yang, and C. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451, 227783 (2020). https://doi.org/10.1016/j.jpowsour.2020.227783
  6. S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H. K. Lee, W. K. Lee, and J. W. Weidner, Investigation of bipolar plate materials for proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 41, 13688-13696 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.163
  7. O. Ijaodola, E. Ogungbemi, F. N. Khatib, T. Wilberforce, M. Ramadan, Z. El- Hassan, J. Thompson, and A. G. Olabi, Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells, Energies, 11, 3203 (2018). https://doi.org/10.3390/en11113203
  8. S. Lee, H. Jeong, B. Ahn, T. Lim, and Y. Son, Parametric study of the channel design at the bipolar plate in PEMFC performances, Int. J. Hydrog. Energy, 33, 5691-5696 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.038
  9. M. H. Akbari and B Rismanchi, Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance, Renew. Energ., 33, 1775-1783 (2008). https://doi.org/10.1016/j.renene.2007.10.009
  10. B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini, and M. I. Rosli, Effects of flow field design on water management and reactant distribution in PEMFC: a review, Ionics, 22 (2016).
  11. V. Velisala and G. N. Srinivasulu, Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell, Arab. J. Sci. Eng., 43, 1225-1234 (2018). https://doi.org/10.1007/s13369-017-2813-7
  12. T. J. Mason, J. Millichamp, T. P. Neville, A. El-Kharouf, B. G. Pollet, and D.J.L. Brett, Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 219, 52-59 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.021
  13. R. Banerjee, J. Hinebaugh, H. Liu, R. Yip, N. Ge, and A. Bazylak, Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression, Int. J. Hydrog. Energy, 41, 14885-14896 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.147
  14. D. Muirhead, R. Banerjee, J. Lee, M. G. George, N. Ge, H. Liu, S. Chevalier, J. Hinebaugh, K. Han, and A. Bazylak, Simultaneous characterization of oxygen transport resistance and spatially resolved liquid water saturation at high-current density of polymer electrolyte membrane fuel cells with varied cathode relative humidity, Int. J. Hydrog. Energy, 42, 29472-29483 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.031
  15. B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, and S.K. Lo, Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor, Int. J. Hydrog. Energy, 37, 13060-13066 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.008
  16. C.-Y. Ahn, M. S. Lim, W. Hwang, S. Kim, J. E. Park, J. Lim, I. Choi , Y.-H. Cho, and Y.-E. Sung, Effect of porous metal flow field in polymer electrolyte membrane fuel cell under pressurized condition, Fuel Cell, 17 (2017).
  17. M. Kim, C. Kim, and Y. Sohn, Application of Metal Foam as a Flow Field for PEM Fuel Cell Stack, Fuel Cell, 18 (2018).
  18. W.C. Tan, L. H. Saw, H. S. Thiam, J. Xuan, Z. Cai, and M. C. Yew, Overview of porous media/metal foam application in fuel cells and solar power systems, Renew. Sust. Energ. Rev., 96, 181-197 (2018). https://doi.org/10.1016/j.rser.2018.07.032
  19. F.-P. Ting, C.-W. Hsieh, W.-H. Weng, and J.-C. Lin, Effect of operational parameters on the performance of PEMFC assembled with Au-coated Ni-foam, Int. J. Hydrog. Energy, 37, 13696-13703 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.142
  20. Y.-H. Lee, S.-M. Li, C.-J. Tseng, C.-Y. Su, S.-C. Lin, and J.-W. Jhuang, Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells, Int. J. Hydrog. Energy,, 42, 22201-22207 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.233
  21. Y. Zhang, Y. Tao, and J. Shao, Application of porous materials for the flow field in polymer electrolyte membrane fuel cells, J. Power Sources, 492, 229664 (2021). https://doi.org/10.1016/j.jpowsour.2021.229664
  22. D. K. Shin, J. H. Yoo, D. G. Kang, and M. S. Kim, Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance, Renew. Energ., 115, 663-675 (2018). https://doi.org/10.1016/j.renene.2017.08.085
  23. J. E. Park, W. Hwang, M. S Lim, S. Kim, C. Y. Ahn, O. H. Kim, J. G. Shim, D.W Lee, J.H Lee, Y. H. Cho, and Y. E. Sung, Achieving breakthrough performance caused by optimized metal foam flow field in fuel cells, Int. J. Hydrog. Energy,, 44, 22074-22084 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.073
  24. D. G, Kang, D. K. Lee, J. M. Choi, D. K. Shin, and M. S. Kim, Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell, Renew. Energ., 156, 931-941 (2020). https://doi.org/10.1016/j.renene.2020.04.142
  25. R. Liu, W. Zhou, S. Li, F. Li, and W. Ling, Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure, Int. J. Hydrog. Energy, 45, 17833-17843 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.238
  26. A. Fly , D. Butcher , Q. Meyer, M. Whiteley, A. Spencer, C. Kim, P. R. Shearing, D. J. L. Brett, and R. Chen, Characterisation of the diffusion properties of metal foam hybrid flow-fields for fuel cells using optical flow visualisation and X-ray computed tomography, J. Power Sources, 395, 171-178 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.070
  27. A. Jo and H. Ju, Numerical study on applicability of metal foam as flow distributor in polymer electrolyte fuel cells (PEFCs) Int. J. Hydrog. Energy, 30, 14012-14026 (2018).