Acknowledgement
이 논문은 2019년 울산대학교 연구비에 의하여 연구되었음.
References
- X. Yu and S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst, J. Power Sources, 172, 145-154 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.048
- Y. Yu, H. Li, H. Wang, X. Z. Yuan, G. Wang, and M. U. Pan, A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies, J. Power Sources, 205, 10-23 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.059
- H. Yano, M. Watanabe, A. Iiyama, and H. Uchida, Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 29, 323-333 (2016). https://doi.org/10.1016/j.nanoen.2016.02.016
- J. Wang, H. Wang, and Y. Fan, Techno-Economic Challenges of Fuel Cell Commercialization, Engineering, 4, 352-360 (2018) https://doi.org/10.1016/j.eng.2018.05.007
- Y. Leng, P. Ming, D. Yang, and C. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451, 227783 (2020). https://doi.org/10.1016/j.jpowsour.2020.227783
- S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H. K. Lee, W. K. Lee, and J. W. Weidner, Investigation of bipolar plate materials for proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 41, 13688-13696 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.163
- O. Ijaodola, E. Ogungbemi, F. N. Khatib, T. Wilberforce, M. Ramadan, Z. El- Hassan, J. Thompson, and A. G. Olabi, Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells, Energies, 11, 3203 (2018). https://doi.org/10.3390/en11113203
- S. Lee, H. Jeong, B. Ahn, T. Lim, and Y. Son, Parametric study of the channel design at the bipolar plate in PEMFC performances, Int. J. Hydrog. Energy, 33, 5691-5696 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.038
- M. H. Akbari and B Rismanchi, Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance, Renew. Energ., 33, 1775-1783 (2008). https://doi.org/10.1016/j.renene.2007.10.009
- B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini, and M. I. Rosli, Effects of flow field design on water management and reactant distribution in PEMFC: a review, Ionics, 22 (2016).
- V. Velisala and G. N. Srinivasulu, Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell, Arab. J. Sci. Eng., 43, 1225-1234 (2018). https://doi.org/10.1007/s13369-017-2813-7
- T. J. Mason, J. Millichamp, T. P. Neville, A. El-Kharouf, B. G. Pollet, and D.J.L. Brett, Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 219, 52-59 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.021
- R. Banerjee, J. Hinebaugh, H. Liu, R. Yip, N. Ge, and A. Bazylak, Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression, Int. J. Hydrog. Energy, 41, 14885-14896 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.147
- D. Muirhead, R. Banerjee, J. Lee, M. G. George, N. Ge, H. Liu, S. Chevalier, J. Hinebaugh, K. Han, and A. Bazylak, Simultaneous characterization of oxygen transport resistance and spatially resolved liquid water saturation at high-current density of polymer electrolyte membrane fuel cells with varied cathode relative humidity, Int. J. Hydrog. Energy, 42, 29472-29483 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.031
- B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, and S.K. Lo, Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor, Int. J. Hydrog. Energy, 37, 13060-13066 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.008
- C.-Y. Ahn, M. S. Lim, W. Hwang, S. Kim, J. E. Park, J. Lim, I. Choi , Y.-H. Cho, and Y.-E. Sung, Effect of porous metal flow field in polymer electrolyte membrane fuel cell under pressurized condition, Fuel Cell, 17 (2017).
- M. Kim, C. Kim, and Y. Sohn, Application of Metal Foam as a Flow Field for PEM Fuel Cell Stack, Fuel Cell, 18 (2018).
- W.C. Tan, L. H. Saw, H. S. Thiam, J. Xuan, Z. Cai, and M. C. Yew, Overview of porous media/metal foam application in fuel cells and solar power systems, Renew. Sust. Energ. Rev., 96, 181-197 (2018). https://doi.org/10.1016/j.rser.2018.07.032
- F.-P. Ting, C.-W. Hsieh, W.-H. Weng, and J.-C. Lin, Effect of operational parameters on the performance of PEMFC assembled with Au-coated Ni-foam, Int. J. Hydrog. Energy, 37, 13696-13703 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.142
- Y.-H. Lee, S.-M. Li, C.-J. Tseng, C.-Y. Su, S.-C. Lin, and J.-W. Jhuang, Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells, Int. J. Hydrog. Energy,, 42, 22201-22207 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.233
- Y. Zhang, Y. Tao, and J. Shao, Application of porous materials for the flow field in polymer electrolyte membrane fuel cells, J. Power Sources, 492, 229664 (2021). https://doi.org/10.1016/j.jpowsour.2021.229664
- D. K. Shin, J. H. Yoo, D. G. Kang, and M. S. Kim, Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance, Renew. Energ., 115, 663-675 (2018). https://doi.org/10.1016/j.renene.2017.08.085
- J. E. Park, W. Hwang, M. S Lim, S. Kim, C. Y. Ahn, O. H. Kim, J. G. Shim, D.W Lee, J.H Lee, Y. H. Cho, and Y. E. Sung, Achieving breakthrough performance caused by optimized metal foam flow field in fuel cells, Int. J. Hydrog. Energy,, 44, 22074-22084 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.073
- D. G, Kang, D. K. Lee, J. M. Choi, D. K. Shin, and M. S. Kim, Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell, Renew. Energ., 156, 931-941 (2020). https://doi.org/10.1016/j.renene.2020.04.142
- R. Liu, W. Zhou, S. Li, F. Li, and W. Ling, Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure, Int. J. Hydrog. Energy, 45, 17833-17843 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.238
- A. Fly , D. Butcher , Q. Meyer, M. Whiteley, A. Spencer, C. Kim, P. R. Shearing, D. J. L. Brett, and R. Chen, Characterisation of the diffusion properties of metal foam hybrid flow-fields for fuel cells using optical flow visualisation and X-ray computed tomography, J. Power Sources, 395, 171-178 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.070
- A. Jo and H. Ju, Numerical study on applicability of metal foam as flow distributor in polymer electrolyte fuel cells (PEFCs) Int. J. Hydrog. Energy, 30, 14012-14026 (2018).