DOI QR코드

DOI QR Code

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics

탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성

  • Kim, Seo Jin (Department of Chemical Engineering, Kangwon National University) ;
  • Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University) ;
  • Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 김서진 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 손선규 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 윤조희 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 최봉길 (강원대학교(삼척캠퍼스) 화학공학과)
  • Received : 2021.05.31
  • Accepted : 2021.07.12
  • Published : 2021.08.10

Abstract

A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.

본 연구에서는 탄소 및 은 잉크를 사용하여 스크린 인쇄 공정을 통한 전위차 나트륨 이온(Na+) 센서를 제작하였다. 센서의 두 전극 구성은 Na+ 용액에서 네른스트 거동에 따라 전극의 전위차를 발생하였다. 제조된 Na+ 센서는 이상적인 네른스트 민감도, 빠른 응답 시간 및 낮은 검출 한계를 보여주었다. 네른스트 반응은 센서의 반복성 및 장기 내구성 테스트 시 안정적이었다. 탄소 전극에 코팅된 Na+ 선택막은 간섭 이온에 대해 나트륨 이온을 선택적으로 통과시켜 우수한 선택성을 증명하였다. 휴대용 Na+ 센서는 인쇄 회로 시스템을 사용하여 제작되었으며 다양한 실제 샘플에서 Na+ 농도를 성공적으로 측정하는 것을 증명하였다.

Keywords

References

  1. N. J. Aburto, A. Ziolkovska, L. Hooper, P. Elliott, F. P. Cappuccio, J. J. Meerpohl, Effect of lower sodium intake on health: systematic review and meta-analyses, BMJ, 346, f1326 (2013). https://doi.org/10.1136/bmj.f1326
  2. J. Powles, S. Fahimi, R. Micha, S. Khatibzadeh, P. Shi, M. Ezzati, R. E. Engell, S. S. Lim, G. Danaei, D. Mozaffarian, Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide, BMJ Open, 3, e003733 (2013). https://doi.org/10.1136/bmjopen-2013-003733
  3. WHO, Guideline: Sodium intake for adults and children, World Health Organization (WHO), Geneva (2012).
  4. P. Strazzullo, L. D'Elia, N.-B. Kandala, F. P. Cappuccio, Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies, BMJ, 339, b4567 (2009). https://doi.org/10.1136/bmj.b4567
  5. P. Traiwatcharanon, W. Siriwatcharapiboon, and C. Wongchoosuk, Electrochemical Sodium Ion Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite for Food Application, Chemosensors, 8, 58 (2020). https://doi.org/10.3390/chemosensors8030058
  6. A. J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J. R. Windmiller, G. Valdes-Ramirez, F. J. Andrade, M. J. Schoning, J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring, Biosens. Bioelectron., 54, 603-609 (2014). https://doi.org/10.1016/j.bios.2013.11.039
  7. M. Parrilla, J. Ferre, T. Guinovart, and F. J. Andrade, Wearable Potentiometric Sensors Based on Commercial Carbon Fibres for Monitoring Sodium in Sweat, Electroanalysis, 28, 1267-1275 (2016). https://doi.org/10.1002/elan.201600070
  8. J. H. Yoon, S-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H-W Cho, K. G. Lee, S. Y. Hwang, J. Park, B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
  9. M. Parrilla, M. Cuartero, G. A. Crespo, Wearable potentiometric ion sensors, Trends Anal. Chem., 110, 303-320 (2019). https://doi.org/10.1016/j.trac.2018.11.024
  10. J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors, Chem. Rev., 108, 329-351 (2008). https://doi.org/10.1021/cr068100w
  11. A. Bratov, N. Abramova, A. Ipatov, Recent trends in potentiometric sensor arrays-A review, Anal. Chim. Acta, 678, 149-159 (2010). https://doi.org/10.1016/j.aca.2010.08.035
  12. E. Zdrachek, and E. Bakker, Potentiometric Sensing, Anal. Chem., 93, 72-102 (2021). https://doi.org/10.1021/acs.analchem.0c04249
  13. S. Wang, Y. Bai, X. Yang, L. Liu, L. Li, Q. Lu, T. Li, T. Zhang, Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring, Talanta, 214, 120869 (2020). https://doi.org/10.1016/j.talanta.2020.120869
  14. M. Parrilla, R. Canovas, I. Jeerapan, F. J. Andrade, and J. Wang, A Textile-Based Stretchable Multi-Ion Potentiometric Sensor, Adv. Healthcare Mater., 5, 996-1001 (2016). https://doi.org/10.1002/adhm.201600092
  15. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
  16. C. Macca, Response time of ion-selective electrodes Current usage versus IUPAC recommendations, Anal. Chim. Acta, 512, 183-190 (2004). https://doi.org/10.1016/j.aca.2004.03.010
  17. J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109
  18. R. P. Buck, and E. Lindner, Recomendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). https://doi.org/10.1351/pac199466122527
  19. E. Bakker, E. Pretsch, and P. Buhlmann, Selectivity of Potentiometric Ion Sensors, Anal. Chem., 72, 1127-1133 (2000). https://doi.org/10.1021/ac991146n