Acknowledgement
This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT (2017M1A2A2086839).
References
- H. Wang, T. Zhu, X. Fan, and H. Na, Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon, Carbon, 67, 712-720 (2014). https://doi.org/10.1016/j.carbon.2013.10.063
- R. Janusa, M. Wadrzyk, P. Natkanski, P. Cool, and P. Kustrowski, Dynamic adsorption-desorption of methyl ethyl ketone on MCM-41 and SBA-15 decorated with thermally activated polymers, J. Ind. Eng. Chem., 71, 465-480 (2019). https://doi.org/10.1016/j.jiec.2018.12.004
- A. M. Yanez-Serrano, A. C. Nolscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier, Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments, Atmos. Chem. Phys., 16, 10965-10984 (2016). https://doi.org/10.5194/acp-16-10965-2016
- H. J. Kim and J. I. Dong, Evaluation and emission characterization of the malodorous substances produced by direct drying of sewage sludge, J. Korea Soc. Waste Manag., 37, 435-442 (2020). https://doi.org/10.9786/kswm.2020.37.6.435
- M. Hajaghazadeh, V. Vaiano, D. Sannino, H. Kakooe, and S.-G. Rahmat, Influence of operating parameters on gas phase photocatalytic oxidation of methyl-ethyl-ketone in a light emitting diode (LED)-fluidized bed reactor, Korean J. Chem. Eng., 32, 636-642 (2015). https://doi.org/10.1007/s11814-014-0239-4
- C. A. Santos, N. H. Phuong, M. J. Park, S. B. Kim, and Y. M. Jo, Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling, Korean J. Chem. Eng., 37, 120-129 (2020). https://doi.org/10.1007/s11814-019-0406-8
- A. A. Adelodun, Influence of operation conditions on the performance of non-thermal plasma technology for VOC pollution control, J. Ind. Eng. Chem., 92, 41-55 (2020). https://doi.org/10.1016/j.jiec.2020.08.026
- M. C. Alvarez-Galvan, V. A. de la PenaOShea, G. Arzamendi, B. Pawelec, L. M. Gandia, and J. L. G. Fierro, Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites, Appl. Catal. B: Environ., 92, 445-453 (2009). https://doi.org/10.1016/j.apcatb.2009.09.006
- H. W. Ryu, M. Y. Song, J. S. Park, J. M. Kim, S-C. Jung, H. S. Ji, B-J. Kim, and Y-K. Park, Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts, Environ. Res., 172, 649-657 (2019). https://doi.org/10.1016/j.envres.2019.03.016
- K. H. P. Reddy, B.-S. Kim, S. S. Lam, S.-C. Jung, J. Song, and Y.-K. Park, Effective toluene oxidation under ozone over mesoporous MnOx/γ-Al2O3 catalyst prepared by solvent deficient method: Effect of Mn precursors on catalytic activity, Environ. Res., 195, 110876 (2021). https://doi.org/10.1016/j.envres.2021.110876
- G. Arzamendi, V. A. delaPenaOShea, M. C. Alvarez-Galvan, J. L. G. Fierro, P. L. Arias, and L. M. Gandia. Kinetics and selectivity of methyl-ethyl-ketone combustion in air over alumina-supported PdOx-MnOx catalysts, J. Catal., 261, 50-59 (2009). https://doi.org/10.1016/j.jcat.2008.11.001
- E. Rezaei and J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts, Chem. Eng. J., 198-199, 482-490 (2012). https://doi.org/10.1016/j.cej.2012.06.016
- J. Jia, P. Zhanga, and L. Chenc, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Appl. Catal. B: Environ., 189, 210-218 (2016). https://doi.org/10.1016/j.apcatb.2016.02.055