DOI QR코드

DOI QR Code

고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images

  • Yoon, Dong-Hyun (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Lee, Hee-Jin (National Agricultural Water Research Center, Hankyong National University) ;
  • Jeon, Min-Gi (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Lee, Sang-Il (Deputy General Manager, Korea Rural Community Corporation) ;
  • Kim, Han-Joong (School of Social Safety and Systems Engineering, Hankyong National University)
  • 투고 : 2021.04.15
  • 심사 : 2021.05.18
  • 발행 : 2021.07.31

초록

For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

키워드

과제정보

본 연구는 행정안전부 극한재난대응기반기술개발사업의 연구비 지원 (2019-MOIS31-010)에 의해 수행되었습니다.

참고문헌

  1. Bang, N. K., W. H. Nam, J. H. Shin, H. J. Kim, K. Kang, S. C. Baek, and K. Y. Lee, 2020. Water balance analysis of pumped-storage reservoir during non-irrigation period for recurrent irrigation water management. Journal of the Korean Society of Agricultural Engineers 62(4): 1-12. doi:10.5389/KSAE.2020.62.4.001.
  2. Bronwen, T., M. Taylor, F. Peter, E. B. Adrian, W. Anna, C. C. Jonathan, and R. Sally, 2011. Measuring the quality of public open space using Google Earth. American Journal of Preventive Medicine 40(2): 105-112. doi:10.1016/j.amepre.2010.10.024.
  3. Chung, S. O., and K. J. Park, 2004. Irrigation return flow measurements and analysis in a small size paddy area. Journal of Korea Water Resources Association 37(7): 517-526. doi:10.3741/JKWRA.2004.37.7.517.
  4. Chung, Y. J., 2015. A study on extraction of croplands located nearby coastal areas using high resolution satellite imagery and LiDAR data. Journal of the Korean Association of Geographic Information Studie 18(1): 170-181. doi:10.11108/kagis.2015.18.1.170.
  5. Kim H. J., C. G. Kim, and S. Kim, 2003. Assessment of water management efficiencies for irrigation pumping stations in the Han river and Nakdong river basins. Magazine of the Korean Society of Agricultural Engineers 45(1): 23-32.
  6. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, T. G. Kim, J. H. Kim, and D. E. Kim, 2020. Percentile approach of drought severity classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers 57(1): 59-67. doi:10.5389/KSAE.2020.62.2.63.
  7. Lee, K. D., S. Y. Hong, and Y. H. Kim, 2012. Farmland use mapping using high resolution images and land use change analysis. Korean Journal of Soil Science and Fertilizer 45(6): 1164-1172. doi:10.7745/KJSSF.2012. 45.6.1164.
  8. Mun, Y. S., W. H. Nam, M. G. Jeon, N. K. Bang, and T. G. Kim, 2020. Assessment of vulnerability to drought disaster in agricultural reservoirs in South Korea. Atmosphere 11(11): 1244. doi:10.3390/atmos11111244.
  9. Nam, W. H., J. Y. Choi, E. M. Hong, and J. T. Kim, 2013. Assessment of irrigation efficiencies using smarter water management. Journal of the Korean Society of Agricultural Engineers 55(4): 45-53. doi:10.5389/KSAE.2013.55.4.045.
  10. Nam, W. H., E. M. Hong, and J. Y. Choi, 2014. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23. doi:10.5389/KSAE.2014.56.2.011.
  11. Nam, W. H., T. G. Kim, E. M. Hong, M. J. Hayes, and M. D. Svoboda, 2015. Water supply risk assessment of agricultural reservoirs using irrigation vulnerability model and cluster analysis. Journal of the Korean Society of Agricultural Engineers 57(1): 59-67. doi:10.5389/KSAE.2015.57.1.059.
  12. Nam, W. H., T. G. Kim, E. M. Hong, J. Y. Choi, and J. T. Kim, 2017. A wireless sensor network (WSN) application for irrigation facilities management based on information and communication technologies (ICTs). Computers and Electronics in Agriculture 143: 185-192. doi:10.1016/j.compag.2017.10.007.
  13. Nam, W. H., 2020. Improvement methodology of agricultural water balance model. Magazine of the Korea Water Resources Association 53(4): 33-42.
  14. Nam, W. H., H. J. Kim, M. G. Jeon, D. H. Yoon, I. K. Jung, K. H. Bae, and J. H. Cho, 2021. Building the digital infrastructure in rural areas for agricultural water management. Magazine of the Korean Society of Agricultural Engineers 63(1): 34-43.
  15. Salamh, F. E., M. M. Mirza, and U. Karabiyik, 2021. UAV forensic analysis and software tools assessment: DJI Phantom4 and Matrice 210 as case studies. Electronics 10(6): 733. doi:10.3390/electronics10060733.
  16. Shin, J. H., W. H. Nam, N. K. Bang, H. J. Kim, H. U. An, J. W. Do, and K. Y. Lee, 2020a. Assessment of water distribution and irrigation efficiency in agricultural reservoirs using SWMM model. Journal of the Korean Society of Agricultural Engineers 62(3): 1-13. doi:10.5389/KSAE.2020.62.3.001.
  17. Shin, J. H., W. H. Nam, N. K. Bang, H. J. Kim, H. U. An, and K. Y. Lee, 2020b. Assessment of irrigation efficiency and water supply vulnerability using SWMM. Journal of the Korean Society of Agricultural Engineers 62(6): 73-83. doi:10.5389/KSAE.2020.62.6.073.
  18. Taddia, Y., F. Stecchi, and A. Pellegrinelli, 2019. Using DJI phantom 4 RTK drone for topographic mapping of coastal areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42: 625-630. doi:10.5194/isprs-archives-XLII-2-W13-625-2019.
  19. Wilhite, D. A., M. J. Hayes, C. Knutson, and K. H. Smith, 2000. Planning for drought: Moving from crisis to risk management. Journal of the American Water Resources Association 36(4): 697-710. doi:10.1111/j.1752-1688.2000.tb04299.x.
  20. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, and T. G. Kim, 2020. Drought hazard assessment using MODIS-based evaporative stress index (ESI) and ROC analysis. Journal of the Korean Society of Agricultural Engineers 62(3): 51-61. doi:10.5389/KSAE.2020.62.3.051.
  21. Zhang, L., and T. Zhou, 2015. Drought over east asia: A review. Journal of Climate 28: 3375-3399. doi:10.1175/JCLI-D-14-00259.1.