DOI QR코드

DOI QR Code

Water retention behaviour of tailings in unsaturated conditions

  • 투고 : 2020.04.20
  • 심사 : 2021.06.26
  • 발행 : 2021.07.25

초록

Tailing dams are complex geotechnical systems comprising of an embankment and a basin containing the waste products from the mining processes. These structures are characterized by a wide surface exposed to the atmosphere whose interaction governs the position of the phreatic surface within the basin. A detailed knowledge of the hydro-mechanical properties of the tailings is fundamental to reliably assess the stability of the tailing dams. While most of the previous studies have dealt with the response of tailings in saturated conditions, this research provides an extension of the hydraulic behaviour in unsaturated and nearly saturated state of tailings collected after the failure of the Stava basins. The hydraulic behaviour in unsaturated conditions was investigated by means of tests where the suction was imposed and the water content was monitored (axis translation technique and vapour equilibrium technique), and tests where the water content was imposed and the suction was measured with psychrometer (dew point method). To account for the in-situ heterogeneity of tailings, the dependency of the water retention relationship on the grain size distribution, the preparation technique and on the initial density / void ratio was studied. Denser tailings showed a higher water retention behaviour than that given in looser specimens. Similarly, the increase of the fine content was demonstrated to improve the water retention capability. As for standard soils, also statically compacted Stava tailings reveal lower retention capability than the slurry samples, thus confirming the importance of the preparation method in determining the hydro-mechanical response of such soils.

키워드

과제정보

The Author wishes to thank Prof. G. Musso, M. Barbero and F. Barpi (Politecnico di Torino) for their valuable inputs, suggestions and support while analyzing the experimental data. The Author also wishes to acknowledge Dr. A. Azizi, Dr. O. Pallara and Mr. G. Bianchi for their help during the laboratory tests presented in this work.

참고문헌

  1. Alonso, E.E., Gens, A. and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405.
  2. Alonso, E.E. and Gens, A. (2006), "Aznalcollar dam failure. Part 1: Field observations and material properties", Geotechnique, 56(3), 165-183. https://doi.org/10.1680/geot.2006.56.3.165.
  3. Alonso, E.E., Pereira, J.M., Vaunat, J. and Olivella, S. (2010), "A microstructurally based effective stress for unsaturated soils", Geotechnique", 60(12), 913-925. http://doi.org/10.1680/geot.8.P.002.
  4. Arab, A., Belkhatir M. and Sadek, M. (2015), "Saturation effect on behaviour of sandy soil under monotonic and cyclic loading: A laboratory investigation", Geotech. Geol. Eng., 34(1), 347-358. https://doi.org/10.1007/s10706-015-9949-6.
  5. Bella, G. (2017), "Hydro-mechanical behaviour of tailings in unsaturated conditions", Ph.D. Dissertation, Politecnico di Torino, Torino, Italy.
  6. Bhanbhro, R. (2014), "Mechanical properties of tailings - basic description of a tailings material from Sweden", Ph.D. Dissertation, Lulea University of Technology, Lulea, Sweden.
  7. Bulut, R., Hineidi, S.M. and Bailey, B. (2002), "Suction measurements - filter paper and chilled mirror psychrometer", Proceedings of the Texas Section American Society of Civil Engineers, Waco, Texas, U.S.A., October.
  8. Cabarkapa, Z. and Cuccovillo, T. (2006), "Automated triaxial apparatus for testing unsaturated soils", Geotech. Test. J., 29(1), 21-29. https://doi.org/10.1520/GTJ12310.
  9. Carrera, A., Coop, M. and Lancellotta, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. https://doi.org/10.1680/geot.9.P.009.
  10. Chandler, R.J. and Tosatti, G. (1995), "The Stava tailings dams failure, Italy, July 1985", Proc. Inst. Civ. Eng. Geotech. Eng., 113(2), 67-79. https://doi.org/10.1680/igeng.1995.27586.
  11. Chu J., Leong, W.K. and Loke, W.L. (2003), "Discussion of "defining an appropriate steady state line for Marriespruit gold tailings", Can. Geotech. J., 40(2), 484-486. https://doi.org/10.1139/t02-118.
  12. Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247.
  13. Esposito, T., Assis, A. and Giovannini, M. (2010), "Influence of the variability of geotechnical parameters on the liquefaction potential of tailing dams", Int. J. Surface Min. Reclam. Environ., 16(4), 304-316. https://doi.org/10.1076/ijsm.16.4.304.8639.
  14. Estabragh, A.R. and Javadi, A.A. (2014), "Roscoe and Hvorslev surfaces for unsaturated silty soil", Int. J. Geomech., 14(2), 230-238. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000306.
  15. Fredlund, D.G., Morgenstern, N.R., and Widger, R.A. (1978), "The shear strength of unsaturated soils", Can. Geotech. J., 15(3), 313-321. https://doi.org/10.1139/t78-029.
  16. Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L. (1996), "The relationship of the unsaturated soil shear strength to the soil-water characteristic curve", Can. Geotech. J., 33(3), 440-448. https://doi.org/10.1139/t96-065.
  17. Fredlund, D.G. and Pham, Q.H. (2006), "A volume-mass constitutive model for unsaturated soils in terms of two independent stress state variables", Proceedings of the 4th International Conference on Unsaturated Soil. Carefree, Arizona, U.S.A., April.
  18. Gallipoli D., Wheeler, S.J. and Karstunen M. (2003), "Modelling the variation of degree of saturation in a deformable unsaturated soil", Geotechnique, 53(1), 105-112. https://doi.org/10.1680/geot.2003.53.1.105.
  19. Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 25(3), 500-510. https://doi/org/10.1139/t88-055.
  20. Horn-Da, L., Chien-Chih, W. and Xu-Hui, W. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.
  21. Huang, S.Y., Barbour, S.L., Fredlund, D.G. (1998), "Development and verification of a coefficient of permeability function for a deformable unsaturated soil", Can. Geotech. J., 35(3), 411-425. https://doi.org/10.1139/t98-010.
  22. Khalili, N. and Khabbaz, M.H. (1998), "A unique relationship for χ for the determination of the shear strength of unsaturated soils", Geotechnique, 48(5), 681-687. https://doi.org/10.1680/geot.1998.48.5.681.
  23. Kim, Y., and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2),353-370. https://doi.org/10.12989/gae.2017.13.2.353.
  24. Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", J. Geotech. Geoenviron. Eng., 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
  25. Lucchi, G. (2021), "Tailing Dams: lezioni dal passato e dal presente. Stava: Cause e responsabilita[Tailing Dams: lessons learnt from the past and present: Causes and responsabilities"]", Online Conference, GEAM.
  26. Luino, F. and De Graff, J.V. (2012), "The Stava mudflow of 19 July 1985 (Northern Italy): A disaster that effective regulation might have prevented", Nat. Hazards Earth Syst. Sci., 12, 1029-1044. https://doi.org/10.5194/nhess-12-1029-2012.
  27. Ng, C.W.W. and Pang, Y.W. (2000), "Influence of stress state on soil-water characteristics and slope stability", J. Geotech. Geoenviron. Eng., 126(2), 157-66. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157).
  28. Nicotera, M.V., Papa, R. and Urciuoli, G., (2015), "The hydromechanical behaviour of unsaturated pyroclastic soils: An experimental investigation", Eng. Geol., 195, 70-84. https://doi.org/10.1016/j.enggeo.2015.05.023.
  29. Oberg A.L. and Sallfors, G. (1997), "Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve", Geotech. Test. J., 20(1), 40-48. https://doi.org/10.1520/GTJ11419J.
  30. Pham H.Q. and Fredlund, D.G. (2008), "Equations for the entire soil-water characteristic curve of a volume change soil", Can. Geotech. J., 45(4), 443-453. https://doi.org/10.1139/T07-117.
  31. Rassam, D.W. and Cook, F.J. (2002), "Predicting the shear strength envelope of unsaturated soil", Geotech. Test. J., 25(2), 215-220. https://doi.org/10.1520/GTJ11365J.
  32. Rassam, D.W. and Williams, D.J. (1999), "A relationship describing the shear strength of unsaturated soils", Can. Geotech. J., 36(2), 363-368. https://doi/org/10.1139/t98-102.
  33. Rico, M., Benito, G., Salgueiro, A.R., Diez-Herrero, A. and Pereira, H.G. (2008), "Reported tailings dam failures - A review of the European incidents in the worldwide context", J. Hazard. Mater., 152(2), 846-852. https://doi.org/10.1016/j.jhazmat.2007.07.050.
  34. Robertson, P.K., de Melo, L., Williams D.J. and Wilson, G.W (2019), Report of the Expert Panel on the Technical Causes of the Failure of Feijao Dam I.
  35. Romero, E. (1999), "Thermo hydro-mechanical behaviour of unsaturated Boom Clay: An experimental study", Ph.D. Dissertation, Universidad Politecnica de Catalunya, Barcelona, Spain.
  36. Santamarina, J.C., Torres-Cruz, L.A. and Bachus, R.C. (2019), "Why coal ash and tailings dam disasters occur", Science, 364(6440), 526-528. https://doi.org/10.1126/science.aax1927.
  37. Sheng, D., Fredlund, D.G., and Gens, A. (2008), "A new modelling approach for unsaturated soils using independent stress variables", Can. Geotech. J., 45(4), 511-534. http://doi.org/10.1139/T07-112.
  38. Sun, D.A., Matsuoka, H., Yao, Y.P. and Ichihara, W. (2000), "An elasto-plastic model for unsaturated soil in three-dimensional stresses", Soils Found., 40(3), 17-28. http://doi.org/10.3208/sandf.40.3_17.
  39. Sun, D., Sheng, D. and Xu, Y. (2007), "Collapse behaviour of unsaturated compacted soil with different initial densities", Can. Geotech. J., 44(6), 673-686. https://doi.org/10.1139/t07-023.
  40. Tang, A.M. and Cui, Y.J. (2005), "Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay", Can. Geotech. J., 42(1), 287-296. https://doi.org/10.1139/t04-082.
  41. Tarantino, A. and Tombolato, S. (2005), "Coupling of hydraulic and mechanical behaviour in unsaturated compacted clay", Geotechnique, 55(4), 307-317. https://doi.org/10.1680/geot.2005.55.4.307.
  42. Tarantino, A. and Mountassir, G. (2013), "Making unsaturated soil mechanics accessible for engineers: Preliminary hydraulic-mechanical characterisation & stability assessment", Eng. Geol., 165, 89-104. https://doi.org/10.1016/j.enggeo.2013.05.025.
  43. Tarantino, A. and Di Donna, A. (2019), "Mechanics of unsaturated soils: simple approaches for routine engineering practice", Rivista Italiana Geotec., 53(4), 5-46. https://doi.org/10.19199/2019.4.0557-1405.005.
  44. Tekinsoy, M.A., Kayadelen, C., Keskin, M.S. and Soylemez, M. (2004), "An equation for predicting shear strength envelope with respect to matric suction", Comput. Geotech., 31(7), 589-593. https://doi.org/10.1016/j.compgeo.2004.08.001.
  45. Toll, D.G. (1990), "A framework for unsaturated soil behaviour", Geotechnique, 40(1), 31-44. https://doi.org/10.1680/geot.1990.40.1.31.
  46. Toll, D.G. and Ong, B.H. (2003), "Critical-state parameters for an unsaturated residual sandy clay", Geotechnique, 53(1), 93-103. https://doi.org/10.1680/geot.2003.53.1.93.
  47. Vaid, Y.P. and Sivathayalan, S. (2000), "Fundamental factors affecting liquefaction susceptibility of sands", Can. Geotech. J., 37(3), 592-606. https://doi.org/10.1139/t00-040.
  48. Vanapalli, S.K., Fredlund, D.G., Pufahl D.E. and Clifton, A.W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
  49. Vanapalli, S.K., Fredlund D. and Pufahl, D.E. (1999), "The influence of soil structure and stress history on the soil-water characteristics of a compacted till", Geotechnique, 49(2), 143-59. https://doi.org/10.1680/geot.1999.49.2.143.
  50. van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soil", Soil Sci. Soc. Amer. J., 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  51. Xu, Y.F. (2004), "Fractal approach to unsaturated shear strength", J. Geotech. Geoenviron. Eng., 130(3), 264-273. http://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(264).
  52. Zanardin, M.T., Oldecop, L.A., Rodriguez, R. and Zabala, F. (2009), "The role of capillary water in the stability of tailing dams", Eng. Geol., 105(1-2), 108-118. https://doi.org/10.1016/j.enggeo.2008.12.003.
  53. Zuoan, W., Yulong C., Guangzhi, Y., Yonghao, Y. and Weimin, S. (2019), "An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China", Geomech. Eng., 19(5), 383-392. https://doi.org/10.12989/gae.2019.19.5.383.