DOI QR코드

DOI QR Code

Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand

  • Kumar, S. Anandha (Centre for Advanced Research on Environment, School of Civil Engineering, SASTRA Deemed University) ;
  • Sujatha, Evangelin Ramani (Centre for Advanced Research on Environment, School of Civil Engineering, SASTRA Deemed University)
  • 투고 : 2020.08.01
  • 심사 : 2021.06.25
  • 발행 : 2021.07.25

초록

Soil stabilization is widely used to favourably amend the soil behaviour. The use of biopolymers to treat soil is not only an eco-friendly but is also a sustainable approach. Biopolymers, xanthan gum and guar gum are used to augment the strength of clayey sand. Xanthan gum is anionic while guar gum is non-ionic. Triaxial tests were conducted on treated soil samples to understand the effect of biopolymer treatment on clayey sand at different dosages and curing periods. Shear strength parameters -angle of internal friction and cohesion increases appreciably on treating soil with xanthan and guar gum for all dosages investigated, though angle of internal friction decreases with the curing period in case of xanthan gum treated soil. Xanthan gum performs better in enhancing the strength and deformation behaviour of the soil compared to guar gum. There is a substantial gain in early strength but as the curing period increases further, the rate of increase in strength is marginal. The deformation modulus at failure also increases with the biopolymer content. The reduction in post-peak strength of treated soil is sudden and drastic indicating brittle behavior. The energy absorption capacity of the biopolymer treated soil increases with increase in biopolymer content and curing period. The strength gain in soil can be ascribed to the formation of hydrogels that are cementitious in nature. Strength is also improved through the ionic / hydrogen bonds that are formed by biopolymer addition.

키워드

과제정보

This work was supported by the TRR fund [TRR18] from the SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India. The authors thank the Vice-Chancellor of SASTRA for the support and infrastructure provided during the period of the study.

참고문헌

  1. Ahmad, R. and Mirza, A. (2018), "Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye", J. Mol. Liquids, 249, 805-814. https://doi.org/10.1016/j.molliq.2017.11.082.
  2. Alam, S., Das, B.K. and Das, S.K. (2018), "Dispersion and sedimentation characteristics of red mud", J. Hazard. Toxic Radioact. Waste, 22(4), 04018025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420.
  3. Alrubaye, A.J., Hasan, M., and Fattah, M.Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng., 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.
  4. Arab M.G., Mousa R.A., Gabr A.R., Azam A.M., El-Badawy S.M., and Hassan A.F (2019). "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565.
  5. ASTM (2015), D2850-15: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  6. Ayeldeen, M., Negm, A., El-Sawwaf, M. and Kitazume, M. (2017), "Enhancing mechanical behaviors of collapsible soil using two biopolymers", J. Rock Mech. Geotech. Eng., 9(2), 329-339. https://doi.org/10.1016/j.jrmge.2016.11.007.
  7. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016). "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
  8. Bouazza, A., Gates, W.P. and Ranjith, P. G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand". Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
  9. Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
  10. Cano-Barrita, P.D.J. and Leon-Martinez, F.M. (2016), Biopolymers with Viscosity-Enhancing Properties for Concrete, in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 221-252.
  11. Casas, J.A., Mohedano, A.F. and Garcia-Ochoa, F. (2000), "Viscosity of guar gum and xanthan/guar gum mixture solutions", J. Sci. Food Agricult., 80(12), 1722-1727. https://doi.org/10.1002/1097-0010(20000915)80.
  12. Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
  13. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
  14. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015a). "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  15. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  16. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015c), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
  17. Chang, I., Im, J. and Cho, G.C. (2016a), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
  18. Chang, I., Im, J. and Cho, G.C. (2016b), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
  19. Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x
  20. Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
  21. Chang, I., Lee, M. and Cho, G.C. (2019a), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies, 12(13), 2567. https://doi.org/10.3390/en12132567.
  22. Chang, I., Kwon, Y. M., Im, J. and Cho, G.C. (2019b), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
  23. Chang, I., Tran, A.T.P. and Cho, G.C. (2019c), Introduction of Biopolymer-based Materials for Ground Hydraulic Conductivity Control, in Tunnels and Underground Cities. Engineering and Innovation Meet Archaeology, Architecture and Art, Taylor and Francis, 277-283.
  24. Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  25. Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.
  26. Chudzikowski, R.J. (1971), "Guar gum and its applications", J. Cosmetic Sci., 22(1), 43.
  27. Das, S. K., Mahamaya, M., Panda, I. and Swain, K. (2015), "Stabilization of pond ash using biopolymer", Procedia Earth Planet. Sci., 11(20).
  28. Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
  29. Eldaw, G.E. (1998), "A study of guar seed and guar gum properties (Cyamopsis tetragonolabous)", M.Sc. Thesis. University of Khartoum, Khartoum, Sudan.
  30. Ghasemzadeh, H., and Modiri, F. (2020a), "Application of novel Persian gum hydrocolloid in soil stabilization", Carbohydrate Polym., 246, 116639. https://doi.org/10.1016/j.carbpol.2020.116639.
  31. Ghasemzadeh, H., Mehrpajouh, A., Pishvaei, M. and Mirzababaei, M. (2020b), "Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite", J. Mater. Civ. Eng., 32(8), 04020212. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003287.
  32. Katzbauer, B. (1998), "Properties and applications of xanthan gum", Polymer Degradation Stability, 59(1-3), 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8.
  33. Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
  34. Krol, Z., Malik, M., Marycz, K. and Jarmoluk, A. (2016), "Physicochemical properties of biopolymer hydrogels treated by direct electric current", Polymers, 8(7), 248. https://doi.org/10.3390/polym8070248.
  35. Kumar, S.A. and Sujatha, E.R. (2020), "Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413.
  36. Kumar, S.A., Sujatha, E.R., Pugazhendi, A. and Jamal, M.T. (2021), "Guar gum - stabilized soil : A clean, sustainable and economic alternative liner material for landfills", Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098-021-02032-z.
  37. Kumar, S.A. and Sujatha, E.R. (2021), "An appraisal of the hydro-mechanical behavior of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohydrate Polym., 265,118083. https://doi.org/10.1016/j.carbpol.2021.118083
  38. Kwon, Y. M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  39. Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
  40. Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0.
  41. Lee, S., Chang, I., Chung, M. K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  42. Lee, S., Im. J., Cho. G.C. and Chang. I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer - treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  43. Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W. and Kanungo, D.P. (2018), "Evaluation of strength properties of sand modified with organic polymers", Polymers, 10(3), 287. https://doi.org/10.3390/polym10030287
  44. Maghchiche, A., Haouam, A. and Immirzi, B. (2010), "Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions", J. Taibah Univ. Sci., 4(1), 9-16. https://doi.org/10.1016/S1658-3655(12)60022-3.
  45. Muguda, S., Booth, S.J., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W. and Gallipoli, D. (2017), "Mechanical properties of biopolymer-stabilised soil-based construction materials", Geotechniq Lett., 7(4), 309-314. https://doi.org/10.1680/jgele.17.00081.
  46. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.
  47. Oluwatuyi, O.E., Ojuri, O.O. and Khoshghalb, A. (2020), "Cement-lime stabilization of crude oil contaminated kaolin clay", J. Rock Mech. Geotech. Eng., 12(1), 160-167. https://doi.org/10.1016/j.jrmge.2019.07.010.
  48. Qureshi, M.U., Bessaih, N., Al-Sadrani, K., Al-Falahi, S. and Al-Mandhari, A. (2014), "Shear strength of Omani sand treated with biopolymer", Proceedings of the 7th International Congress on Environmental Geotechnics: ICEG 2014, Melbourne, Australia, November.
  49. Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
  50. Rashid, A.S.A., Latifi, N., Meehan, C.L. and Manahiloh, K.N., (2017), "Sustainable improvement of tropical residual soil using an environmentally friendly additive", Geotech. Geol. Eng., 35(6), 2613-2623. https://doi.org/10.1007/s10706-017-0265-1.
  51. Ravisankar, R., Kiruba, S., Eswaran, P., Senthilkumar, G. and Chandrasekaran, A. (2010), "Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique", J. Chem., 7(S1), S185-S190. https://doi.org/10.1155/2010/643218.
  52. Reddy, N.G., Nongmaithem, R.S., Basu, D. and Rao, B.H. (2020), "Application of biopolymers for improving the strength characteristics of red mud waste", Environ. Geotech., 1-20. https://doi.org/10.1680/jenge.19.00018.
  53. Smitha, S., Rangaswamy, K. and Keerthi, D.S. (2019), "Triaxial test behavior of silty sands treated with agar biopolymer", Int. J. Geotech. Eng., 1-12. https://doi.org/10.1080/19386362.2019.1679441.
  54. Soldo, A. and Miletic, M. (2019), "Study on shear strength of xanthan gum-amended soil", Sustainability, 11(21), 6142. https://doi.org/10.3390/su11216142.
  55. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-019-57135-x.
  56. Song, Z., Liu, J., Bai, Y., Wei, J., Li, D., Wang, Q., Chen, Z., Kanungo. D.P. and Qian, W. (2019), "Laboratory and field experiments on the effect of vinyl acetate polymer-reinforced soil", Appl. Sci., 9(1), 208. https://doi.org/10.3390/app9010208.
  57. Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behavior of guar gum-treated soil", Soils Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
  58. Sujatha, E.R., Sivaraman, S. and Subramani, A.K. (2020), "Impact of hydration and gelling properties of guar gum on the mechanism of soil modification", Arab. J. Geosci., 13(23), 1-12. https://doi.org/10.1007/s12517-020-06258-x.
  59. Venugopal, K.N. and Abhilash, M. (2010), "Study of hydration kinetics and rheological behavior of guar gum", Int. J. Pharm. Sci. Res., 1(1), 28-39.
  60. Wang, S., Xue, Q., Zhu, Y., Li, G., Wu, Z. and Zhao, K. (2021), "Experimental study on material ratio and strength performance of geopolymer-improved soil", Constr. Build. Mater., 267, 120469. https://doi.org/10.1016/j.conbuildmat.2020.120469.
  61. Yin, Y., Yin, H., Wu, Z., Qi, C., Tian, H., Zhang, W., Hu, Z. and Feng, L. (2019), "Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and raman spectroscopy", Crystals, 9(10), 513. https://doi.org/10.3390/cryst9100513.

피인용 문헌

  1. Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material vol.193, pp.12, 2021, https://doi.org/10.1007/s10661-021-09644-4