과제정보
This work was supported by the TRR fund [TRR18] from the SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India. The authors thank the Vice-Chancellor of SASTRA for the support and infrastructure provided during the period of the study.
참고문헌
- Ahmad, R. and Mirza, A. (2018), "Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye", J. Mol. Liquids, 249, 805-814. https://doi.org/10.1016/j.molliq.2017.11.082.
- Alam, S., Das, B.K. and Das, S.K. (2018), "Dispersion and sedimentation characteristics of red mud", J. Hazard. Toxic Radioact. Waste, 22(4), 04018025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420.
- Alrubaye, A.J., Hasan, M., and Fattah, M.Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng., 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.
- Arab M.G., Mousa R.A., Gabr A.R., Azam A.M., El-Badawy S.M., and Hassan A.F (2019). "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565.
- ASTM (2015), D2850-15: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Ayeldeen, M., Negm, A., El-Sawwaf, M. and Kitazume, M. (2017), "Enhancing mechanical behaviors of collapsible soil using two biopolymers", J. Rock Mech. Geotech. Eng., 9(2), 329-339. https://doi.org/10.1016/j.jrmge.2016.11.007.
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016). "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
- Bouazza, A., Gates, W.P. and Ranjith, P. G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand". Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
- Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
- Cano-Barrita, P.D.J. and Leon-Martinez, F.M. (2016), Biopolymers with Viscosity-Enhancing Properties for Concrete, in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 221-252.
- Casas, J.A., Mohedano, A.F. and Garcia-Ochoa, F. (2000), "Viscosity of guar gum and xanthan/guar gum mixture solutions", J. Sci. Food Agricult., 80(12), 1722-1727. https://doi.org/10.1002/1097-0010(20000915)80.
- Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015a). "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015c), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
- Chang, I., Im, J. and Cho, G.C. (2016a), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
- Chang, I., Im, J. and Cho, G.C. (2016b), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
- Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x
- Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
- Chang, I., Lee, M. and Cho, G.C. (2019a), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies, 12(13), 2567. https://doi.org/10.3390/en12132567.
- Chang, I., Kwon, Y. M., Im, J. and Cho, G.C. (2019b), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
- Chang, I., Tran, A.T.P. and Cho, G.C. (2019c), Introduction of Biopolymer-based Materials for Ground Hydraulic Conductivity Control, in Tunnels and Underground Cities. Engineering and Innovation Meet Archaeology, Architecture and Art, Taylor and Francis, 277-283.
- Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
- Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.
- Chudzikowski, R.J. (1971), "Guar gum and its applications", J. Cosmetic Sci., 22(1), 43.
- Das, S. K., Mahamaya, M., Panda, I. and Swain, K. (2015), "Stabilization of pond ash using biopolymer", Procedia Earth Planet. Sci., 11(20).
- Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
- Eldaw, G.E. (1998), "A study of guar seed and guar gum properties (Cyamopsis tetragonolabous)", M.Sc. Thesis. University of Khartoum, Khartoum, Sudan.
- Ghasemzadeh, H., and Modiri, F. (2020a), "Application of novel Persian gum hydrocolloid in soil stabilization", Carbohydrate Polym., 246, 116639. https://doi.org/10.1016/j.carbpol.2020.116639.
- Ghasemzadeh, H., Mehrpajouh, A., Pishvaei, M. and Mirzababaei, M. (2020b), "Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite", J. Mater. Civ. Eng., 32(8), 04020212. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003287.
- Katzbauer, B. (1998), "Properties and applications of xanthan gum", Polymer Degradation Stability, 59(1-3), 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8.
- Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
- Krol, Z., Malik, M., Marycz, K. and Jarmoluk, A. (2016), "Physicochemical properties of biopolymer hydrogels treated by direct electric current", Polymers, 8(7), 248. https://doi.org/10.3390/polym8070248.
- Kumar, S.A. and Sujatha, E.R. (2020), "Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413.
- Kumar, S.A., Sujatha, E.R., Pugazhendi, A. and Jamal, M.T. (2021), "Guar gum - stabilized soil : A clean, sustainable and economic alternative liner material for landfills", Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098-021-02032-z.
- Kumar, S.A. and Sujatha, E.R. (2021), "An appraisal of the hydro-mechanical behavior of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohydrate Polym., 265,118083. https://doi.org/10.1016/j.carbpol.2021.118083
- Kwon, Y. M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0.
- Lee, S., Chang, I., Chung, M. K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
- Lee, S., Im. J., Cho. G.C. and Chang. I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer - treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
- Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W. and Kanungo, D.P. (2018), "Evaluation of strength properties of sand modified with organic polymers", Polymers, 10(3), 287. https://doi.org/10.3390/polym10030287
- Maghchiche, A., Haouam, A. and Immirzi, B. (2010), "Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions", J. Taibah Univ. Sci., 4(1), 9-16. https://doi.org/10.1016/S1658-3655(12)60022-3.
- Muguda, S., Booth, S.J., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W. and Gallipoli, D. (2017), "Mechanical properties of biopolymer-stabilised soil-based construction materials", Geotechniq Lett., 7(4), 309-314. https://doi.org/10.1680/jgele.17.00081.
- Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.
- Oluwatuyi, O.E., Ojuri, O.O. and Khoshghalb, A. (2020), "Cement-lime stabilization of crude oil contaminated kaolin clay", J. Rock Mech. Geotech. Eng., 12(1), 160-167. https://doi.org/10.1016/j.jrmge.2019.07.010.
- Qureshi, M.U., Bessaih, N., Al-Sadrani, K., Al-Falahi, S. and Al-Mandhari, A. (2014), "Shear strength of Omani sand treated with biopolymer", Proceedings of the 7th International Congress on Environmental Geotechnics: ICEG 2014, Melbourne, Australia, November.
- Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
- Rashid, A.S.A., Latifi, N., Meehan, C.L. and Manahiloh, K.N., (2017), "Sustainable improvement of tropical residual soil using an environmentally friendly additive", Geotech. Geol. Eng., 35(6), 2613-2623. https://doi.org/10.1007/s10706-017-0265-1.
- Ravisankar, R., Kiruba, S., Eswaran, P., Senthilkumar, G. and Chandrasekaran, A. (2010), "Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique", J. Chem., 7(S1), S185-S190. https://doi.org/10.1155/2010/643218.
- Reddy, N.G., Nongmaithem, R.S., Basu, D. and Rao, B.H. (2020), "Application of biopolymers for improving the strength characteristics of red mud waste", Environ. Geotech., 1-20. https://doi.org/10.1680/jenge.19.00018.
- Smitha, S., Rangaswamy, K. and Keerthi, D.S. (2019), "Triaxial test behavior of silty sands treated with agar biopolymer", Int. J. Geotech. Eng., 1-12. https://doi.org/10.1080/19386362.2019.1679441.
- Soldo, A. and Miletic, M. (2019), "Study on shear strength of xanthan gum-amended soil", Sustainability, 11(21), 6142. https://doi.org/10.3390/su11216142.
- Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-019-57135-x.
- Song, Z., Liu, J., Bai, Y., Wei, J., Li, D., Wang, Q., Chen, Z., Kanungo. D.P. and Qian, W. (2019), "Laboratory and field experiments on the effect of vinyl acetate polymer-reinforced soil", Appl. Sci., 9(1), 208. https://doi.org/10.3390/app9010208.
- Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behavior of guar gum-treated soil", Soils Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
- Sujatha, E.R., Sivaraman, S. and Subramani, A.K. (2020), "Impact of hydration and gelling properties of guar gum on the mechanism of soil modification", Arab. J. Geosci., 13(23), 1-12. https://doi.org/10.1007/s12517-020-06258-x.
- Venugopal, K.N. and Abhilash, M. (2010), "Study of hydration kinetics and rheological behavior of guar gum", Int. J. Pharm. Sci. Res., 1(1), 28-39.
- Wang, S., Xue, Q., Zhu, Y., Li, G., Wu, Z. and Zhao, K. (2021), "Experimental study on material ratio and strength performance of geopolymer-improved soil", Constr. Build. Mater., 267, 120469. https://doi.org/10.1016/j.conbuildmat.2020.120469.
- Yin, Y., Yin, H., Wu, Z., Qi, C., Tian, H., Zhang, W., Hu, Z. and Feng, L. (2019), "Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and raman spectroscopy", Crystals, 9(10), 513. https://doi.org/10.3390/cryst9100513.
피인용 문헌
- Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material vol.193, pp.12, 2021, https://doi.org/10.1007/s10661-021-09644-4