과제정보
This research was supported by Ministry of Land, Infrastructure and Transport of Korean Government (Grant 20CTAP-C158044-02).
참고문헌
- ACI Committee 318, (2014), "Building code requirements for structural concrete and commentary (ACI318-14)", Farmington Hills, MI, USA.
- Ahmadi, M., Naderpour, H. and Kheyroddin, A., (2017), "ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete", Int. J. Civ. Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0.
- Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2014), "Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load", Arch. Civ. Mech. Eng., 14(3), 510-517. https://doi.org/10.1016/j.acme.2014.01.006.
- AISC Committee (2010), "Specification for Structural Steel Buildings (ANSI/AISC 360-10)", Chicago-Illinois: American Institute of Steel Construction.
- Alavi, A.H., Gandomi, A.H., Mousavi, M. and Mollahasani, A. (2010), "High-precision modeling of uplift capacity of suction caissons using a hybrid computational method" Geomech. Eng., 2(4), 253-280.https://doi.org/10.12989/gae.2010.2.4.253.
- Australian Standard TM Bridge design Part 6 : Steel and composite construction, (2004).
- Avci-karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583
- Beck, A.T., de Oliveira, W.L.A., De Nardim, S. and ElDebs, A.L. H.C. (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308. https://doi.org/10.1016/j.engstruct.2009.05.004.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T. D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Chen, C., Yousif, S.T., Najem, R.M., Abavisani, A., Pham, B.T., Wakil, K., Tonnizam Mohamad, E. and Khorami, M. (2019), "Optimum cost design of frames using genetic algorithms", Steel Compos. Struct., 30(3), 293-304. https://doi.org/10.12989/scs.2019.30.3.293.
- Chen, Y., Hou, C. and Peng, J., (2019), "Stability study on tenon-connected SHS and CFST columns in modular construction", Steel Compos. Struct., 30(2), 185-199. https://doi.org/10.12989/scs.2019.30.2.185.
- Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001.
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numer. Math., 31(4), 377-403.https://doi.org/10.1007/BF01404567.
- Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin-Wall. Struct., 56, 62-70. https://doi.org/10.1016/j.tws.2012.03.008.
- Ekmekyapar, T. and Al-Eliwi, B.J.M. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Wall. Struct., 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004.
- European Committee for Standardization (2004), "Eurocode 4: Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings,", London, UK.
- Evirgen, B., Tuncan, A. and Taskin, K., (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin-Wall. Struct., 80, 46-56. https://doi.org/10.1016/j.tws.2014.02.022.
- Friedman, J.H. (1991), "Multivariate Adaptive Regression Splines", Ann. Statics, 19(1), 1-67. https://www.jstor.org/stable/2241837.
- Ghannam S., Jawad Y.A. and Hunaiti, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns." Steel Compos. Struct., 4(1), 1-8. https://doi.org/10.12989/scs.2004.4.1.001.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Goldberg, D.E. (1989), "Genetic Algorithms in Search, Optimization and Machine Learning", 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
- Gomes, G.F., de Almeida, F.A., Junqueira, D.M., da Cunha, S.S. and Ancelotti, A.C. (2019), "Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods", Eng. Struct., 181(2018), 111-123. https://doi.org/10.1016/j.engstruct.2018.11.081.
- Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16(1), 99-114. https://doi.org/10.1007/s13296-016-3009-9.
- Han, L.H.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
- Han, L.H. and An, Y.F. (2014), "Performance of concrete-encased CFST stub columns under axial compression", J. Constr. Steel Res., 93, 62-76.https://doi.org/10.1016/j.jcsr.2013.10.019.
- Hayalioglut, M.S. and Degertekini, S.O. (2004), "Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections", Steel Compos. Struct., 4(6), 453-469. https://doi.org/10.12989/scs.2004.4.6.453.
- Holland, J.H. (1975), "Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence", Oxford, England: U Michigan Press.
- Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi A. and Mohamad E.T. (2019), "Three hybrid intelligent models in estimating flyrock distance resulting from blasting", Eng. Comput., 35(1), 243-256. https://doi.org/10.1007/s00366-018-0596-4.
- Li, N., Lu, Y.Y., Li, S. and Liang, H.J. (2015), "Statistical-based evaluation of design codes for circular concrete-filled steel tube columns", Steel Compos. Struct., 18(2), 519-546. https://doi.org/10.12989/scs.2015.18.2.519.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01115-7.
- Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS - MARS method for predicting the ultimate load - carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concret, 25(1), 1-4. https://doi.org/10.12989/cac.2020.25.1.001.
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geoemech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- Moon, J., Kim, J.J., Lee, T.H. and Lee, H.E. (2014), "Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic", J. Constr. Steel Res., 101, 184-191. https://doi.org/10.1016/j.jcsr.2014.05.011.
- Nguyen, M.S.T., Thai D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
- Nikdel, P., Hosseinpour, M., Badamchizadeh, M.A. and Akbari, M. A. (2014), "Improved Takagi-Sugeno fuzzy model-based control of flexible joint robot via Hybrid-Taguchi genetic algorithm", Eng. Appl. Artif. Intell., 33, 12-20. https://doi.org/10.1016/j.engappai.2014.03.009.
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/scs.2017.25.4.485.
- Portoles, J.M., Romero, M.L., Bonet, J.L. and Filippou, F.C. (2011), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017.
- Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm", Appl. Sci., 9(14).https://doi.org/10.3390/app9142802.
- Ren, Y. and Bai, G. (2010), "Determination of optimal SVM parameters by using GA/PSO", J. Comput., 5(8), 1160-1168. https://doi.org/10.4304/jcp.5.8.1160-1168.
- Sarir, P., Shen, S.L., Wang, Z.F., Chen, J., Horpibulsuk, S. and Pham, B.T. (2019), "Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC", Eng. Comput., (0123456789). https://doi.org/10.1007/s00366-019-00855-5.
- Standardization E.C. for and Institution B.S. (2004), "Eurocode 4: Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings".
- Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D. and Kang, W.H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221 https://doi.org/10.1016/j.engstruct.2016.12.049.
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017a), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017b), "Behaviour of steel tubular members infilled with ultra high strength concrete", J. Constr. Steel Res., 138, 168-183. https://doi.org/10.1016/j.jcsr.2017.07.001.
- Yaseen, Z.M., Tung, M., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fi ber reinforced concrete beam using hybrid intelligence models : A new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074.
- Zhao, H., (2016), "Analysis of seismic behavior of composite frame structures", Steel Compos. Struct., 20(3), 719-729. https://doi.org/10.12989/scs.2016.20.3.719.
- Zheng, D., Qian, Z., Liu, Y. and Liu, C. (2018), "Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network", Constr. Build. Mater., 158, 614-623. https://doi.org/10.1016/j.conbuildmat.2017.10.056.