DOI QR코드

DOI QR Code

Tensile performances of single-lap countersunk composite joints with metallic bushing

  • Cheng, Xiaoquan (School of Aeronautic Science and Engineering, Beihang University) ;
  • Du, Xiaoyuan (School of Aeronautic Science and Engineering, Beihang University) ;
  • Chen, Kun (School of Aeronautic Science and Engineering, Beihang University) ;
  • Shu, Maosheng (AVIC Chengdu Aircraft Design and Research Institute) ;
  • Liu, Xiaodong (AVIC Chengdu Aircraft Design and Research Institute) ;
  • Chen, Gang (The Second System Design Department of the Second Research Academy of CASIC)
  • Received : 2020.06.03
  • Accepted : 2021.06.03
  • Published : 2021.08.10

Abstract

Tensile tests were carried out on the single-lap countersunk composite joints with metallic bushing, and the load-displacement curves, strains and damage morphologies around the bolt hole were measured. A 3D progressive damage finite element model (FEM) was established in ABAQUS/Standard and verified by experimental results. Based on the validated model, tensile performances of the joints were investigated, including damage mechanism analysis of the laminate and the effect discussion of bushing thickness, tightening torque, interference fit size and etc. The results show that metallic bushing can improve ultimate bearing load of the joints. The stress distribution and initial damages caused by assembly around the laminate hole are little affected by bushing thickness. Appropriate tightening torque and interference fit size can improve tensile performances of the joint.

Keywords

References

  1. Camanho, P. and Matthews, F. (2000), "Bonded metallic inserts for bolted joints in composite laminates", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 214(1), 33-40. https://doi.org/10.1177/146442070021400105.
  2. Camanho, P., Tavares, C., De Oliveira, R., Marques, A. and Ferreira, A. (2005), "Increasing the efficiency of composite single-shear lap joints using bonded inserts", Compos. Part B: Eng., 36(5), 372-383. https://doi.org/10.1016/j.compositesb.2005.01.007.
  3. Chang, F.K. and Lessard, L.B. (1991), "Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I-Analysis", J. Compos. Mater., 25(1), 2-43. https://doi.org/10.1177/002199839102500101.
  4. Cheng, X., Fan, J., Liu, S., Guo, X., Xu, Y. and Zhang, T. (2016), "Design and investigation of composite bolted π-joints with an unconventional configuration under bending load", Compos. Part B: Eng., 85, 59-67. https://doi.org/10.1016/j.compositesb.2015.09.026.
  5. Cheng, X., Zhang, J., Zhang, J., Liu, P., Cheng, Y. and Xu, Y. (2018), "Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging", Steel Compos. Struct., 26(3), 265-272. https://doi.org/10.12989/scs.2018.26.3.265.
  6. Dursun, T. and Soutis, C. (2017), "A finite element analysis of bolted joints loaded in tension: protruding head and countersunk fastener", Int. J. Struct. Integrity, 8(1), 35-50. https://doi.org/10.1108/IJSI-09-2015-0033.
  7. Egan, B., McCarthy, C.T., McCarthy, M.A. and Frizzell, R. (2012), "Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance", Compos. Struct., 94(3), 1038-1051. https://doi.org/10.1016/j.compstruct.2011.10.004.
  8. Egan, B., McCarthy, M., Frizzell, R., Gray, P. and McCarthy, C. (2014), "Modelling bearing failure in countersunk composite joints under quasi-static loading using 3D explicit finite element analysis", Compos. Struct., 108, 963-977. https://doi.org/10.1016/j.compstruct.2013.10.033.
  9. Falconieri, D. and Franco, F. (2015), "The effect of titanium insert repairs on the static strength of CFRP coupons and joints", Compos. Struct., 134, 799-810. https://doi.org/10.1016/j.compstruct.2015.08.042.
  10. Fu, Y., Ge, E., Su, H., Xu, J. and Li, R. (2015), "Cold expansion technology of connection holes in aircraft structures: A review and prospect", Chinese J. Aeronaut., 28(4), 961-973. https://doi.org/10.1016/j.cja.2015.05.006.
  11. Giannopoulos, I.K., Doroni-Dawes, D., Kourousis, K.I. and Yasaee, M. (2017), "Effects of bolt torque tightening on the strength and fatigue life of airframe FRP laminate bolted joints", Compos. Part B: Eng., 125, 19-26. https://doi.org/10.1016/j.compositesb.2017.05.059.
  12. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664.
  13. Herrera-Franco, P.J. and Cloud, G.L. (1992), "Strain-relief inserts for composite fasteners-an experimental study", J. Compos. Mater., 26(5), 751-768. https://doi.org/10.1177/002199839202600506.
  14. Hu, J., Zhang, K., Yang, Q., Cheng, H., Liu, P. and Yang, Y. (2018), "An experimental study on mechanical response of single-lap bolted CFRP composite interference-fit joints", Compos. Struct., 196, 76-88. https://doi.org/10.1016/j.compstruct.2018.05.016.
  15. Kapti, S., Sayman, O., Ozen, M. and Benli, S. (2010), "Experimental and numerical failure analysis of carbon/epoxy laminated composite joints under different conditions", Mater. Design, 31(10), 4933-4942. https://doi.org/10.1016/j.matdes.2010.05.018.
  16. Khashaba, U., Sallam, H., Al-Shorbagy, A. and Seif, M. (2006), "Effect of washer size and tightening torque on the performance of bolted joints in composite structures", Compos. Struct., 73(3), 310-317. https://doi.org/10.1016/j.compstruct.2005.02.004.
  17. Kradinov, V., Madenci, E. and Ambur, D. (2005), "Bolted lap joints of laminates with varying thickness and metallic inserts", Compos. Struct., 68(1), 75-85. https://doi.org/10.1016/j.compstruct.2004.03.002.
  18. Li, J., Li, Y., Zhang, K., Liu, P. and Zou, P. (2015), "Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure", Fatigue Fract. Eng. Mater. Struct., 38(11), 1359-1371. https://doi.org/10.1111/ffe.12313.
  19. Li, X., Cheng, X. and Cheng, Y. (2021), "Tensile properties of a composite-metal single-lap hybrid bonded/bolted joint", Chinese J. Aeronaut., 34(2), 629-640. https://doi.org/10.1016/j.cja.2020.03.042.
  20. Li, X., Cheng, X. and Guo, X. (2020), "Tensile properties of a hybrid bonded/bolted joint: Parameter study", Compos. Struct., 245. https://doi.org/10.1016/j.compstruct.2020.112329.
  21. Liang, W., Duan, Z., Wang, Z. and Lin, P. (2015), "Experimental and numerical investigation on bolted joint in glass-fiber reinforced composites", Adv. Compos. Mater., 24(1), 161-173. https://doi.org/10.1080/09243046.2014.976733.
  22. Liu, F., Zhang, J., Zhao, L., Xin, A. and Zhou, L. (2015), "An analytical joint stiffness model for load transfer analysis in highly torqued multi-bolt composite joints with clearances", Compos. Struct., 131, 625-636. https://doi.org/10.1016/j.compstruct.2015.06.003.
  23. Liu, P., Cheng, X., Wang, S., Liu, S. and Cheng, Y. (2016), "Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method", Compos. Struct., 138, 30-39. https://doi.org/10.1016/j.compstruct.2015.11.058.
  24. Mandal, B. and Chakrabarti, A. (2018), "Numerical failure assessment of multi-bolt FRP composite joints with varying sizes and preloads of bolts", Compos. Struct., 187, 169-178. https://doi.org/10.1016/j.compstruct.2017.12.048.
  25. Mara, V., Haghani, R. and Al-Emrani, M. (2016), "Improving the performance of bolted joints in composite structures using metal inserts", J. Compos. Mater., 50(21), 3001-3018. https://doi.org/10.1177/0021998315615204.
  26. Mazraehshahi, H.T. and Zakeri, A. (2012), "Influence of material and geometrical parameters on stress field of composite plates with insert", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 226(12), 1573-1582. https://doi.org/10.1177/0954410011424091.
  27. McCarthy, C.T. and Gray, P.J. (2011), "An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints", Compos. Struct., 93(2), 287-298. https://doi.org/10.1016/j.compstruct.2010.09.017.
  28. Nassiraei, H. and Rezadoost, P. (2020), "Stress concentration factors in tubular T/Y-joints strengthened with FRP subjected to compressive load in offshore structures", Int. J. Fatigue, 140. https://doi.org/10.1016/j.ijfatigue.2020.105719.
  29. Nassiraei, H. and Rezadoost, P. (2021a), "Local joint flexibility of tubular T/Y-joints retrofitted with GFRP under in-plane bending moment", Mar. Struct., 77. https://doi.org/10.1016/j.marstruc.2021.102936.
  30. Nassiraei, H. and Rezadoost, P. (2021b), "Parametric study and formula for SCFs of FRP-strengthened CHS T/Y-joints under out-of-plane bending load", Ocean Eng., 221. https://doi.org/10.1016/j.oceaneng.2020.108313.
  31. Nassiraei, H. and Rezadoost, P. (2021c), "Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load", Eng. Struct., 236. https://doi.org/10.1016/j.engstruct.2021.112041.
  32. Nassiraei, H. and Rezadoost, P. (2021d), "Stress concentration factors in tubular T/Y-connections reinforced with FRP under in-plane bending load", Mar. Struct., 76. https://doi.org/10.1016/j.marstruc.2020.102871.
  33. Nassiraei, H. and Rezadoost, P. (2021e), "Stress concentration factors in tubular X-connections retrofitted with FRP under compressive load", Ocean Eng., 229. https://doi.org/10.1016/j.oceaneng.2020.108562.
  34. Nezhad, H.Y., Egan, B., Merwick, F. and McCarthy, C.T. (2017), "Bearing damage characteristics of fibre-reinforced countersunk composite bolted joints subjected to quasi-static shear loading", Compos. Struct., 166 184-192. https://doi.org/10.1016/j.compstruct.2017.01.029.
  35. Nilsson, S. (1989), "Increasing strength of graphite/epoxy bolted joints by introducing an adhesively bonded metallic insert", J. Compos. Mater., 23(7), 642-650. https://doi.org/10.1177/002199838902300701.
  36. Okutan, B., Aslan, Z. and Karakuzu, R. (2001), "A study of the effects of various geometric parameters on the failure strength of pin-loaded woven-glass-fiber reinforced epoxy laminate", Compos. Sci. Technol., 61(10), 1491-1497. https://doi.org/10.1016/S0266-3538(01)00043-4.
  37. Olmedo, A. and Santiuste, C. (2012), "On the prediction of bolted single-lap composite joints", Compos. Struct., 94(6), 2110-2117. https://doi.org/10.1016/j.compstruct.2012.01.016.
  38. Reddy, Y.S. and Reddy, J.N. (1993), "Three-dimensional finite element progressive failure analysis of composite laminates under axial extension", J. Compos. Technol. Res., 15(2), 73-87. https://doi.org/10.1520/CTR10358J.
  39. Rufin, A.C. (1995), "Fastener hole reinforcement in composites using cold-expanded inserts", J. Compos. Technol. Res., 17(2), 145-151. https://doi.org/10.1520/CTR10478J.
  40. Tserpes, K.I., Papanikos, P. and Kermanidis, T. (2001), "A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading", Fatigue Fract. Eng. Mater. Struct., 24(10), 663-675. https://doi.org/10.1046/j.1460-2695.2001.00424.x.
  41. Wang, S.W., Cheng, X.Q., Guo, X., Li, X. and Chen, G. (2016), "Influence of Lateral Displacement of the Grip on Single lap Composite-to-Aluminum Bolted Joints", Exp. Mech., 56(3), 407-417. https://doi.org/10.1007/s11340-015-0110-5.
  42. Wei, J., Jiao, G., Jia, P. and Huang, T. (2013), "The effect of interference fit size on the fatigue life of bolted joints in composite laminates", Compos.Part B: Eng., 53 62-68. https://doi.org/10.1016/j.compositesb.2013.04.048.
  43. Zhai, Y., Li, D., Li, X., Wang, L. and Yin, Y. (2015), "An experimental study on the effect of bolt-hole clearance and bolt torque on single-lap, countersunk composite joints", Compos. Struct., 127, 411-419. https://doi.org/10.1016/j.compstruct.2015.03.028.
  44. Zhang, X., Yu, J., Jia, X., Shan, L., Tang, X. and Shen, Q. (2016), "Research on the relationship between the install moment and bolt stress in the aerocraft party jointment", Aeronaut. Manufact. Technol., 8, 81-84. https://doi.org/10.16080/j.issn1671-833x.2016.08.081.
  45. Zhao, L., Xin, A., Liu, F., Zhang, J. and Hu, N. (2016), "Secondary bending effects in progressively damaged single-lap, single-bolt composite joints", Results in Phys., 6, 704-711. https://doi.org/10.1016/j.rinp.2016.08.021.