DOI QR코드

DOI QR Code

Higher order plate theory for buckling analysis of plates based on exact solution

  • Bi, Ran (Department of Civil and Architectural Engineering, Xi'an University of Science and Technology) ;
  • Gao, Jun (Department of Civil Engineering, Tsinghua University) ;
  • Allahyari, Seyedmahmoodreza (Department of Mechanical Engineering, Dariun Branch, Islamic Azad University)
  • 투고 : 2019.10.05
  • 심사 : 2021.07.01
  • 발행 : 2021.08.10

초록

In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

키워드

과제정보

Sponsored by the National Natural Science Foundation of China (no. 11802230, 11972283, 11872299), Natural Science Foundation of Shaanxi Province (2018JQ5122), Natural Science Foundation of Shaanxi Provincial Department of Education (18JK0501), Natural Science Foundation of Shaanxi Province (2018JQ5122), National Natural Science Foundation of China (no. 11972283).

참고문헌

  1. Allahkarami, F., Nikkhah-bahrami, M. and Ghassabzadeh Saryazdi, M. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion", Steel Compos. Struct., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673.
  2. Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4.
  3. Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and Chipara, M. (2013), "Investigation of polymeric composite films using modified TiO2 nanoparticles for organic light emitting diodes", J. Current Nanosci., 9(1), 14-20. https://doi.org/10.2174/1573413711309010005.
  4. Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", J. Comput. Mat. Sci., 49(4), 194-198. https://doi.org/10.1016/j.commatsci.2010.04.016.
  5. Duc, N.D., Quan, T.Q. and Nam, D. (2013), "Nonlinear stability analysis of imperfect three phase polymer composite plates", J. Mech. Compos. Mat., 49, 345-358. https://doi.org/10.1016/j.compstruct.2013.10.050.
  6. Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
  7. Duc, N.D. (2014b), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", J. Compos. Struct., 102, 306-314. https://doi.org/10.1016/j.compstruct.2012.11.017.
  8. Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect three-phase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009.
  9. Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
  10. Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mat. Struct., 25(13), 1157-1167. https://doi.org/10.1080/15376494.2017.1341581.
  11. Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  12. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene concrete platelets reinforced porous nano composite concrete plates resting on elastic foundation", Compos. Struct., 204, 831-846, https://doi.org/10.22059/jcamech.2019.282388.405.
  13. Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  14. Hosseini, S.M. and Zhang, C.H. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene concrete platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271, https://doi.org/10.12989/scs.2018.27.3.255.
  15. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of visco elastic micro concrete plates reinforced with SWCNTs using Bolotin method", Nonlinear Dynam., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  16. Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin-Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026.
  17. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z.H., Gao, W. and Liu, M. (2018), "Isogeometric Analysis of functionally graded porous concrete plates reinforced by graphene concrete platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
  18. Liu, J., Wu, M., Yang, Y., Yang, G., Yan, H. and Jiang, K. (2018), "Preparation and mechanical performance of graphene concrete platelet reinforced titanium nanocomposites for high temperature applications", Comput. Concrete, 22, 355-363. https://doi.org/10.1021/acsami.5b10424.
  19. Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018.
  20. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.
  21. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mat. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.
  22. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016d), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mat. Des., 12, 153-171, https://doi.org/10.1007/s10999-015-9299-9.
  23. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  24. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2018), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, https://doi.org/10.1016/j.compositesb.2018.11.074.
  25. Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metal-ceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056.
  26. Reddy, J.N. (2002), "Mechanics of laminated composite concrete plates and shells: theory and analysis", 2nd Ed., CRC Press.
  27. Rout, M., Hot, S.S. and Karmakar, A. (2019), "Thermoelastic free vibration response of graphene reinforced laminated composite shells", Eng. Struct., 178, 179-190, https://doi.org/10.1016/j.engstruct.2018.10.029.
  28. Shokravi, M. (2017), "Buckling of sandwich concrete plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy concrete plate theory", Steel Compos. Struct., 23(6), 623-631, https://doi.org/10.12989/scs.2017.23.6.623.
  29. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", Proceedings of the IOP Conference Series: Materials Science and Engineering, 178(1), 012026, https://doi.org/10.1088/1757-899X/178/1/012026.
  30. Thai, H. and Vo, T. (2013), "A new sinusoidal shear deformation theory for bending, buckling and vibration of functionally graded concrete plates", Appl. Math. Model., 37, 3269-3281, https://doi.org/10.1016/j.apm.2012.08.008.
  31. Thai, H., Park, M. and Choi, D. (2013), "A simple refined theory for bending, buckling, and vibration of thick concrete plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52, https://doi.org/10.1177/1099636214526852.
  32. Thu, P.V. and Duc, N.D. (2016), "Nonlinear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environments", J. Sci. Eng. Compos. Mat., https://doi.org/10.1515/secm-2015-0467.
  33. Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", Aerosp. Sci. Technol., 79, 383-398, https://doi.org/10.1016/j.ast.2018.05.058.
  34. Wang, K.F. and Wang, B.L. (2013), "Effect of surface energy on the non-linear postbuckling behavior of nanoplates", Int. J. Non-Linear Mech., 55, 19-24. https://doi.org/10.1016/j.ijnonlinmec.2013.04.004.