DOI QR코드

DOI QR Code

Fabrication of the FET-based SPM probe by CMOS standard process and its performance evaluation

CMOS 표준 공정을 통한 SPM 프로브의 제작 및 그 성능 평가

  • Lee, Hoontaek (Department of mechanical engineering, Pohang University of Science and Technology) ;
  • Kim, Junsoo (Department of mechanical engineering, Pohang University of Science and Technology) ;
  • Shin, Kumjae (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Moon, Wonkyu (Department of mechanical engineering, Pohang University of Science and Technology)
  • 이훈택 (포항공과대학교 기계공학과) ;
  • 김준수 (포항공과대학교 기계공학과) ;
  • 신금재 (한국생산기술연구원 안전시스템연구그룹) ;
  • 문원규 (포항공과대학교 기계공학과)
  • Received : 2021.06.17
  • Accepted : 2021.07.13
  • Published : 2021.07.31

Abstract

In this paper, we report the fabrication of the tip-on-gate of a field-effect-transistor (ToGoFET) probe using a standard complementary metal-oxide-semiconductor (CMOS) process and the performance evaluation of the fabricated probe. After the CMOS process, I-V characteristic measurement was performed on the reference MOSFET. We confirmed that the ToGoFET probe could be operated at a gate voltage of 0 V due to channel ion implantation. The transconductance at the operating point (Vg = 0 V, Vd = 2 V) was 360 ㎂/V. After the fabrication process was completed, calibration was performed using a pure metal sample. For sensitivity calibration, the relationship between the input voltage of the sample and the output current of the probe was determined and the result was consistent with the measurement result of the reference MOSFET. An oxide sample measurement was performed as an example of an application of the new ToGoFET probe. According to the measurement, the ToGoFET probe could spatially resolve a hundred nanometers with a height of a few nanometers in both the topographic image and the ToGoFET image.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2018R1D1A1B07049316, NRF-2021R1F1A1064046).

References

  1. G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope", Phys. Rev. Lett., Vol. 56, No. 9, pp. 930-933, 1986. https://doi.org/10.1103/PhysRevLett.56.930
  2. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, "High-resolution capacitance measurement and potentiometry by force microscopy", Appl. Phys. Lett., Vol. 52, No. 13, pp. 1103-1105, 1988. https://doi.org/10.1063/1.99224
  3. M. Nonnenmacher, M. P. O'Boyle, and H. K. Wickramasinghe, "Kelvin probe force microscopy", Appl. Phys. Lett., Vol. 58, No. 25, pp. 2921-2923, 1991. https://doi.org/10.1063/1.105227
  4. J. R. Matey and J. Blanc, "Scanning capacitance microscopy", J. Appl. Phys., Vol. 57, No. 5, pp. 1437-1444, 1985. https://doi.org/10.1063/1.334506
  5. F. Muller, A. Muller, M. Hietschold, and S. Kammer, "Detecting electrical forces in noncontact atomic force microscopy", Meas. Sci. Technol., Vol. 9, No. 5, p. 734, 1998. https://doi.org/10.1088/0957-0233/9/5/002
  6. L. Collins, M. B. Okatan, Q. Li, I. I. Kravenchenko, N. V. Lavrik, S. V. Kalinin, B. J. Rodriguez, and S. Jesse, "Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection", Nanotechnology, Vol. 26, No. 17, p. 175707, 2015. https://doi.org/10.1088/0957-4484/26/17/175707
  7. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, "Scanning capacitance microscopy measurements and modeling: Progress towards dopant profiling of silicon", J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 14, No. 1, pp. 242-247, 1996. https://doi.org/10.1116/1.588455
  8. L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, "Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy", Appl. Phys. Lett., Vol. 91, No. 24, p. 243110, 2007. https://doi.org/10.1063/1.2821119
  9. T. Glatzel, S. Sadewasser, and M. C. Lux-Steiner, "Amplitude or frequency modulation-detection in Kelvin probe force microscopy", Appl. Surf. Sci., Vol. 210, No. 1-2, pp. 84-89, 2003. https://doi.org/10.1016/S0169-4332(02)01484-8
  10. T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, Cl. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, "Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics", J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 18, No. 6, pp. 2669-2675, 2000. https://doi.org/10.1116/1.1327299
  11. M. S. Suh, J. H. Choi, Y. Kuk, and J. Jung, "Silicon-based field-effect-transistor cantilever for surface potential mapping", Appl. Phys. Lett., Vol. 83, No. 2, pp. 386-388, 2003. https://doi.org/10.1063/1.1591231
  12. M. Suh, C. S. Lee, S. H. Kim, K. I. Lee, J. W. Cho, Y. Kuk, and J. K. Shin, "Surface potential imaging in oxide-nitrideoxide-silicon structure using a field effect transistor cantilever", Sens. Actuators A-Phys., Vol. 136, No. 2, pp. 597-603, 2007. https://doi.org/10.1016/j.sna.2007.01.005
  13. H. Ko, K, Ryu, H. Park, C. Park, D. Jeon, Y. K. Kim, J. Jung, D-K. Min, Y. Kim, H. Lee, Y. Park, H. Shin, and S. Hong, "High-resolution field effect sensing of ferroelectric charges", Nano lett., Vol. 11, No. 4, pp. 1428-1433, 2011. https://doi.org/10.1021/nl103372a
  14. S. H. Lee, G. Lim, W. Moon, H. Shin, and C. W. Kim, "Vshaped metal-oxide-semiconductor transistor probe with nano tip for surface electric properties", Ultramicroscopy, Vol. 108, No. 10, pp. 1094-1100, 2008. https://doi.org/10.1016/j.ultramic.2008.04.034
  15. K. Shin, D. S. Kang, S. H. Lee, and W. Moon, "A scanning microscopy technique based on capacitive coupling with a field-effect transistor integrated with the tip", Ultramicroscopy, Vol. 159, No. P1, pp. 1-10, 2015. https://doi.org/10.1016/j.ultramic.2015.07.007
  16. K. Shin, H. Lee, M. Sung, S. Lee, H. Shin, and W. Moon, "A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si", Micron, Vol. 101, pp. 197-205, 2017. https://doi.org/10.1016/j.micron.2017.07.011