DOI QR코드

DOI QR Code

Pathogenicity Determinants of Sclerotinia sclerotiorum and Their Association to Its Aggressiveness on Brassica juncea

  • Gill, Rupeet (Department of Vegetable Science, Punjab Agricultural University) ;
  • Sandhu, Prabhjodh S. (DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University) ;
  • Sharma, Sanjula (DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University) ;
  • Sharma, Pankaj (DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University)
  • Received : 2021.03.01
  • Accepted : 2021.07.05
  • Published : 2021.08.01

Abstract

White rot or stem rot caused by Sclerotinia sclerotiorum is one of the most destructive fungal diseases that have become a serious threat to the successful cultivation of oilseed Brassicas. The study was designed with an aim to investigate the association between the pathogenic aggressiveness and pathogenicity determinants of this pathogen specifically in Brassica for the first time. For this, a total of 58 isolates of S. sclerotiorum from different geographical regions were collected and purified. These isolates were inoculated on a Brassica juncea cv. RL-1359 and they exhibited high level of variation in their disease progression. The isolates were grouped and then 24 isolates were selected for the biochemical analysis of pathogenicity determinants. The isolates varied significantly with respect to their total organic acids, oxalic acid production and pectin methyl esterase and polygalacturonase activity. The oxalic acid production corresponded to the disease progression of the isolates; the isolates with higher oxalic acid production were the more aggressive ones and vice-versa. This is, in our knowledge, the first study to establish a correlation between oxalic acid production and pathogenic aggressiveness of S. sclerotiorum on B. juncea. However, the pectinases' enzyme activity did not follow the trend as of disease progression. These suggest an indispensable role of oxalic acid in pathogenicity of the fungus and the potential to be used as biochemical marker for preliminary assessment of pathogenic aggressiveness of various isolates before incorporating them in a breeding program.

Keywords

References

  1. Ando, K., Grumet, R., Terpstra, K. and Kelly, J. D. 2007. Manipulation of plant architecture to enhance crop disease control. CAB Rev. 2:1-8.
  2. Annis, S. L. and Goodwin, P. H. 1997. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 103:1-14. https://doi.org/10.1023/A:1008656013255
  3. Boland, G. J. and Hall, R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16:93-100. https://doi.org/10.1080/07060669409500766
  4. Bolton, M. D., Thomma, B. P. H. J. and Nelson, B. D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7:1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
  5. Buchwaldt, L., Li, R., Hegedus, D. D. and Rimmer, S. R. 2005. Pathogenesis of Sclerotinia sclerotiorum in relation to screening for resistance. In: Proceedings of the 13th International Sclerotinia Workshop, p. 22. University of California Cooperative Extension, Salinas, CA, USA.
  6. Cessna, S. G., Sears, V. E., Dickman, M. B. and Low, P. S. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191-2199. https://doi.org/10.1105/tpc.12.11.2191
  7. De Bary, A. 1866. Morphologie und physiologie der pilze, flechten, und myxomyceten. Hofmeister's handbook of physiological botany. Vol. 2. Engelmann, Leipzig, Germany. 316 pp. (in German).
  8. Deese, C. D. and Stahmann, M. A. 1962. Pectic enzymes in Fusarium-infected susceptible and resistant tomato plants. Phytopathology 52:255-260.
  9. Durman, S. B., Menendez, A. B. and Godeas, A. M. 2005. Variation in oxalic acid production and mycelial compatibility within field populations of Sclerotinia sclerotiorum. Soil Biol. Biochem. 37:2180-2184. https://doi.org/10.1016/j.soilbio.2005.03.017
  10. Favaron, F., Sella, L. and D'Ovidio, R. 2004. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol. PlantMicrobe Interact. 17:1402-1409. https://doi.org/10.1094/MPMI.2004.17.12.1402
  11. Godoy, G., Steadman, J. R., Dickman, M. B. and Dam, R. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. Plant Pathol. 37:179-191. https://doi.org/10.1016/0885-5765(90)90010-U
  12. Guimaraes, R. L. and Stotz, H. U. 2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol. 136:3703-3711. https://doi.org/10.1104/pp.104.049650
  13. Li, C. X., Li, H., Sivasithamparam, K., Fu, T. D., Li, Y. C., Liu, S. Y. and Barbetti, M. J. 2006. Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Aust. J. Agric. Res. 57:1131-1135. https://doi.org/10.1071/AR06066
  14. Li, C. X., Liu, S. Y., Sivasithamparam, K. and Barbetti, M. J. 2008. New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and B. juncea germplasm screened under Western Australian conditions. Australas. Plant Pathol. 38:149-152. https://doi.org/10.1071/AP08087
  15. Lumsden, R. D. 1979. Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology 69:890-896. https://doi.org/10.1094/Phyto-69-890
  16. Marciano, P., Di Lenna, P. and Magro, P. 1983. Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 22:339-345. https://doi.org/10.1016/S0048-4059(83)81021-2
  17. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. https://doi.org/10.1021/ac60147a030
  18. Morrall, R. A. A., Duczek, J. and Sheard, J. W. 1972. Variations and correlations within and between morphology, pathogenicity, and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Can. J. Bot. 50:767-786. https://doi.org/10.1139/b72-095
  19. Morrall, R. A. A., Dueck, J., McKenzie, D. L. and McGee, D. C. 1976. Some aspects of Sclerotinia sclerotiorum in Saskatchewan, 1970-75. Can. Plant Dis. Surv. 56:56-62.
  20. Riou, C., Freyssinet, G. and Fevre, M. 1991. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 57:1478-1484. https://doi.org/10.1128/aem.57.5.1478-1484.1991
  21. Rollins, J. A. and Dickman, M. B. 2001. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl. Environ. Microbiol. 67:75-81. https://doi.org/10.1128/AEM.67.1.75-81.2001
  22. Saharan, G. S. and Mehta, N. 2008. Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Dordrecht, The Netherlands. 486 pp.
  23. Sharma, S., Harmandeep and Soni, G. 2001a. Interaction of phenolic compounds with pectinases from Sclerotinia sclerotiorum. Indian Phytopathol. 54:167-170.
  24. Sharma, S., Yadav, J. L. and Sharma, G. R. 2001b. Effect of various agronomic practices on the incidence of white rot of Indian mustard caused by Sclerotinia sclerotiorum. J. Mycol. Plant Pathol. 31:83-84.
  25. Steadman, J. R. 1983. White mold: a serious yield-limiting disease of bean. Plant Dis. 67:346-350. https://doi.org/10.1094/PD-67-346
  26. Vega, R. R., Corsini, D. and Le Tourneau, D. 1970. Nonvolatile organic acids produced by Sclerotinia sclerotiorum in synthetic liquid media. Mycologia 62:332-338. https://doi.org/10.2307/3757591
  27. Waksman, G., Keon, J. P. and Turner, G. 1991. Purification and characterization of two endopolygalacturonases from Sclerotinia sclerotiorum. Biochem. Biophys. Acta. 1073:43-48. https://doi.org/10.1016/0304-4165(91)90180-O
  28. Xu, X.-Q. and Zhang, Z.-Q. 2000. Kinetic spectrophotometric determination of oxalic acid based on the catalytic oxidation of bromophenol blue by dichromate. Microchim. Acta 135:169-172. https://doi.org/10.1007/s006040070006
  29. Yadav M. S., Yadava, D. K., Nasim, A., Saroj, S. and Bambawale, O. M. 2011. Sclerotinia rot: a threat to rapeseed-mustard and virulence assessment of released varieties against Sclerotinia sclerotiorum. Plant Dis. Res. 26:202.
  30. Zhao, J., Peltier, A. J., Meng, J., Osborn, T. C. and Grau, C. R. 2004. Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Dis. 88:1033-1039. https://doi.org/10.1094/PDIS.2004.88.9.1033
  31. Zhou, T. and Boland, G. J. 1999. Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 21:93-99. https://doi.org/10.1080/07060661.1999.10600090