DOI QR코드

DOI QR Code

Design and Implementation of IoT Platform-based Digital Twin Prototype

IoT 플랫폼 기반 디지털 트윈 프로토타입 설계 및 구현

  • Received : 2021.05.11
  • Accepted : 2021.07.08
  • Published : 2021.07.30

Abstract

With the recent development of IoT and artificial intelligence technology, research and applications for optimization of real-world problems by collecting and analyzing data in real-time have increased in various fields such as manufacturing and smart city. Representatively, the digital twin platform that supports real-time synchronization in both directions with the virtual world digitized from the real world has been drawing attention. In this paper, we define a digital twin concept and propose a digital twin platform prototype that links real objects and predicted results from the virtual world in real-time by utilizing the oneM2M-based IoT platform. In addition, we implement an application that can predict accidents from object collisions in advance with the prototype. By performing predefined test cases, we present that the proposed digital twin platform could predict the crane's motion in advance, detect the collision risk, perform optimal controls, and that it can be applied in the real environment.

최근 사물인터넷 및 인공지능 기술의 발전에 따라 제조, 스마트시티 등 다양한 분야에서 실시간으로 데이터를 수집하고 분석하여 현실세계 문제에 대한 최적화를 수행하는 연구 및 적용사례가 증가하고 있다. 대표적으로 현실세계를 디지털화한 가상세계와 양방향으로 실시간 동기화를 지원하는 디지털 트윈 기술이 주목받고 있다. 본 논문에서는 디지털 트윈을 정의하고 사물인터넷 국제표준인 oneM2M 기반의 IoT 플랫폼을 활용하여 현실사물과 가상세계의 예측결과를 실시간으로 연결하는 디지털 트윈 플랫폼의 프로토타입을 제안한다. 또한, 제안된 프로토타입을 적용하여 물체의 충돌을 사전에 예측하여 사고를 예방할 수 있는 응용서비스를 구현한다. 응용서비스에서는 사전 정의한 테스트 케이스 수행을 통해 제안한 디지털 트윈 프로토타입이 크레인의 동작을 사전 예측하여 충돌 위험을 감지하고 이를 기반으로 최적 제어를 수행할 수 있으며 실제 환경에 응용 가능함을 보였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00869, 5G 기반 조선해양 스마트 통신 플랫폼 및 융합서비스 개발).

References

  1. S. Haag and R. Anderl, "Digital twin - Proof of concept," Manufacturing Letters, Vol.15, No.2, pp.64-66, January 2018. https://doi.org/10.1016/j.mfglet.2018.02.006
  2. F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, "Digital Twin in Industry: State-of-the-Art," IEEE Transactions on Industrial Informatics, Vol.15, No.4, pp.2405-2415, April 2019. https://doi.org/10.1109/tii.2018.2873186
  3. Unity 3d, https://unity.com/ (accessed July 20, 2021)
  4. Unreal Engine, https://www.unrealengine.com/ (accessed July 20, 2021)
  5. GE, https://www.ge.com/ (accessed July 20, 2021)
  6. T. Ruohomaki, E. Airaksinen, P. Huuska, O. Kesaniemi, M. Martikka, and J. Suomisto, "Smart city platform enabling digital twin," International Conference on Intelligent Systems, Funchal, Portugal, pp. 155-161, 2008.
  7. C. Zhuang, J. Liu, and H. Xiong, "Digital twin-based smart production management and control framework for the complex product assembly shop-floor," International Journal of Advanced Manufacturing Technology, Vol.96, No.7, pp.1149-1163, February 2018. https://doi.org/10.1007/s00170-018-1617-6
  8. F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, "Digital twin-driven product design, manufacturing and service with big data," The International Journal of Advanced Manufacturing Technology, Vol.94, No.3, pp.3563-3576, March 2018. https://doi.org/10.1007/s00170-017-0233-1
  9. Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, and M. J. Deen, "A novel cloud-based framework for the elderly healthcare services using digital twin," IEEE Access, Vol.7, pp.49088-49101, April 2019. https://doi.org/10.1109/ACCESS.2019.2909828
  10. Y. Chen, "Integrated and intelligent manufacturing: Perspectives and enablers," Engineering, Vol.3, No.5, pp.588-595, October 2017. https://doi.org/10.1016/j.eng.2017.04.009
  11. E. Negri, L. Fumagalli, and M. Macchi, "A review of the roles of digital twin in cps-based production systems," Procedia Manufacturing, Vol.11, No.1 pp.939-948, September 2017. https://doi.org/10.1016/j.promfg.2017.07.198
  12. A. Madni, C. Madni, and S. Lucero, "Leveraging digital twin technology in model-based systems engineering," Systems, Vol.7, No.1, pp. 1-13, January 2019. https://doi.org/10.3390/systems7010001
  13. C. Liu, P. Jiang, and W. Jiang, "Web-based digital twin modeling and remote control of cyber-physical production systems," Robotics and Computer-Integrated Manufacturing, vol 64, No.1, pp. 1-16, August 2020.
  14. H. Laaki, Y. Miche, and K. Tammi, "Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of Remote Surgery," IEEE Access, Vol.7, No.1, pp.20325-20336, February 2019. https://doi.org/10.1109/ACCESS.2019.2897018
  15. I. Ahn, J. Lim, J. Seo, and I, Yun, "Development of an oneM2M-compliant IoT Platform for Wearable Data Collection," KSII Transactions on Internet and Information Systems, Vol.13, No.1, pp.1-15, January 2019. https://doi.org/10.3837/tiis.2019.01.001
  16. R. A. Light, "Mosquitto: server and client implementation of the MQTT protocol," Journal of Open Source Software, Vol.2, No.13, pp. 265, May 2017. https://doi.org/10.21105/joss.00265