DOI QR코드

DOI QR Code

Cold Hardiness Change in Solenopsis japonica (Hymenoptera: Formicidae) by Rapid Cold Hardening

급속내한성 유기에 의한 일본열마디개미(Solenopsis japonica)의 내한성 변화

  • Park, Youngjin (Plant Quarantine Technique Center, Animal and Plant Quarantine Agency) ;
  • Vatanparast, Mohammad (Plant Quarantine Technique Center, Animal and Plant Quarantine Agency) ;
  • Lee, Jieun (Plant Quarantine Technique Center, Animal and Plant Quarantine Agency)
  • Received : 2021.01.06
  • Accepted : 2021.02.24
  • Published : 2021.06.01

Abstract

Solenopsis japonica, which is belonging to Formicidae in Hymenoptera, is a native ant species in Korea. However, it had not been studied for cold hardiness of S. japonica to understand on its overwintering mechanisms in field so far. Cold tolerance on developmental stages was measured at different cold temperature with various exposure times. Workers showed more survival at 5℃ and 10℃ compared with other stages and elevated cold tolerance when workers were exposed at 15℃ for more than 12h incubation as a rapid cold hardening (RCH) condition. RCH treatment not only increased survival of workers at cold temperatures, but also decreased supercooling point (SCP) and freezing point (FP). RCH group increased the survival rate by 44% at 10℃ compared with Non-RCH group. SCP and FP were depressed from -10.0 to -14.2℃ and from -11.3 to -15.3℃, respectively, after RCH treatment. Cold temperature increased expression level of cold- and stress-related genes such as glycerol kinase and heat shock protein. These results indicate unacclimated cold tolerance of S. japonica and its acclimation to low temperature by RCH.

벌목 개미과의 일본열마디개미는 국내 토착종이다. 지금까지 야외에서 이 종의 월동기작을 이해하기 위한 내한성 연구는 진행되지 않았다. 저온에서 다양한 온도별 노출시간에 따른 발육태별 저온 저항성을 조사하였다. 성충인 일개미가 다른 발육태와 비교하여 5℃와 10℃의 저온에서 높은 생존율을 보였으며, 급속내한성 유기 조건인 15℃에서 12시간 노출 후 내한성을 획득하였다. 급속내한성 유기는 10℃에서 최대 44%까지 생존율이 향상되었으며, 체내과냉각점과 체내빙점은 각각 -10.0℃에서 -14.2℃, -11.3℃에서 -15.3℃까지 낮아졌다. 저온처리는 저온 또는 스트레스 관련 유전자인 글리세롤 인산화효소와 열충격 단백질의 발현을 증가시켰다. 이상의 결과는 일본열마디개미의 내한성이 급속내한성 유기에 의해 야기된다는 것을 의미한다.

Keywords

Acknowledgement

본 연구는 농림축산검역본부의 생물다양성 위협 외래생물관리 기술개발사업인 "붉은불개미류의 분류동정, 생리·생태 및 방제법 연구(과제번호: PQ2018A006)" 과제의 지원을 받아 수행되었습니다.

References

  1. Abril, S., Oliveras J., Gomez Cl., 2007. Foraging activity and dietary spectrum of the Argentine ant (Hymenoptera: Formicidae) in invaded natural areas of the northeast Iberian Peninsula. Environ. Entomol. 36, 1166-1173. https://doi.org/10.1603/0046-225X(2007)36[1166:FAADSO]2.0.CO;2
  2. Abril, S., Oliveras, J., Gomez C., 2014. Effect of temperature on the development and survival of the Argentine ant, Linepithema humile. J. Insect Sci. 10, 97. https://doi.org/10.1673/031.010.9701
  3. Bale, J.S., 1996. Insect cold hardiness: A matter of life and death. Eur. J. Entomol. 93, 369-382.
  4. Bale, J.S., Hayward, S.A., 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980-994. https://doi.org/10.1242/jeb.037911
  5. Bradshaw, W.E., Holzapfel, C.M., 2010. Insect at not so low temperature, in: Denlinger, D.L., Lee, R.E. (Eds.), Low temperature biology of insects. Cambridge University Press, UK, pp. 242-275.
  6. Callcott, A.M.A., Oi, D.H., Collins, H.L., Williams, D.F., Lockley, T.C., 2000. Seasonal studies of an isolated red imported fire ant (Hymenoptera: Formicidae) population in eastern Tennessee. Environ. Entomol. 29, 788-794. https://doi.org/10.1603/0046-225X-29.4.788
  7. Choi, B.M, Park, K.S., 1991. Studies on distribution of ants (Formicidae) in Korea (6). The vegetation, the species composition and the colony density of ants in Mt. Namsan, Seoul. Korean. J. Appl. Entomol. 30, 80-85.
  8. Danks, H.V., 2004. Seasonal adaptations in arctic insects. Integr. Comp. Biol. 44, 85-94. https://doi.org/10.1093/icb/44.2.85
  9. Duman, J.G., 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Ann. Rev. Physiol. 63, 327-357. https://doi.org/10.1146/annurev.physiol.63.1.327
  10. Duman, J.G., Horwath, K.L., 1983. The role of hemolymph proteins in the cold tolerance of insects. Ann. Rev. Physiol. 45, 261-270. https://doi.org/10.1146/annurev.ph.45.030183.001401
  11. Francke, O.F., Cokendolpher, J.C., 1986. Temperature tolerances of the red imported fire ant, in: Lofgren, C.S., Vander Meer, R.K. (Eds.), Fire ants and leafcutting andt: biology and management. Westview, Boulder, CO, pp. 104-113.
  12. James, S.S., Pereira, R.M., Vail, K.M., Ownley, B.H., 2002. Survival of imported fire ant (Hymenoptera: Formicidae) species subjected to freezing and near-freezing temperatures. Environ. Entomol. 31, 127-133. https://doi.org/10.1603/0046-225X-31.1.127
  13. Jumbam, K.R., Jackson, S., Terblanche, J.S., McGeoch, M.A., Chown, S.L., 2008. Acclimation effects on critical and lethal thermal limits of workers of Argentine ant, Linepithema humile. J. Insect Physiol. 54, 1008-1014. https://doi.org/10.1016/j.jinsphys.2008.03.011
  14. Kim, Y., Kim N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26, 1117-1123. https://doi.org/10.1093/ee/26.5.1117
  15. Leather, S.R., Walters, K.F.A, Bale, J.S., 1995. The ecology of insect overwintering. Cambridge University Press, UK.
  16. Lee, R.E., Denlinger, D.L., 1991. Insects at low temperature. Chapman and Hall, New York, USA.
  17. Lee, R.E., Chen, C.P., Denlinger, D.L., 1987. A rapid cold-hardiness process in insects. Science 238, 1414-1417.
  18. Lee, R.E., Elnitsky, M.A., Rinehart, J.P., Hayward, S.A.L., Sandro, L.H., Denlinger, D.L., 2006. Rapid cold-hardening increases the freezing tolerance of the antarctic midge Belgica antarctica. J. Exp. Biol. 209, 399-406. https://doi.org/10.1242/jeb.02001
  19. Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203. https://doi.org/10.1242/jeb.092031
  20. Park, Y., Kim, Y., 2014. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. J. Insect. Physiol. 67, 56-63. https://doi.org/10.1016/j.jinsphys.2014.06.010
  21. Park, Y., Kim, K., Kim, Y., 2014. Rapid Cold Hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083. https://doi.org/10.1603/EN13291
  22. Quinn, P.J. 1985. A lipid phase separation model of low-temperature damage to biological membranes. Cryobiology 22, 128-146. https://doi.org/10.1016/0011-2240(85)90167-1
  23. Rodenhouse, N.L., Christenson, L.M., Parry, D., Green, L.E., 2009. Climate change effects on native fauna of northeastern forests. Can. J. For. Res. 39, 249-263. https://doi.org/10.1139/X08-160
  24. SAS Institute Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  25. Storey, K.B. 1990. Biochemical adaptation for cold hardiness on insects. Phil. Trans. R. Soc. Lond. B. 326, 635-654. https://doi.org/10.1098/rstb.1990.0036
  26. Storey, K.B., Storey, J.M., 1998. Freeze tolerance in animals. Physiol. Rev. 68, 27-84. https://doi.org/10.1152/physrev.1988.68.1.27
  27. Storey, K.B., Storey, J.M., 2012. Insect cold hardiness: metabolic, gene, and protein adaptation. Can. J. Zool. 90, 456-475. https://doi.org/10.1139/z2012-011