DOI QR코드

DOI QR Code

Digital Filter Algorithm based on Local Steering Kernel and Block Matching in AWGN Environment

AWGN 환경에서 로컬 스티어링 커널과 블록매칭에 기반한 디지털 필터 알고리즘

  • Cheon, Bong-Won (Dept. of Smart Robot Convergence and Application Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2021.01.29
  • Accepted : 2021.06.09
  • Published : 2021.07.31

Abstract

In modern society, various digital communication equipment is being used due to the influence of the 4th industrial revolution. Accordingly, interest in removing noise generated in a data transmission process is increasing, and research is being conducted to efficiently reconstruct an image. In this paper, we propose a filtering algorithm to remove the AWGN generated in the digital image transmission process. The proposed algorithm classifies pixels with high similarity by selecting regions with similar patterns around the input pixels according to block matching to remove the AWGN that appears strongly in the image. The selected pixel determines the estimated value by applying the weight obtained by the local steering kernel, and obtains the final output by adding or subtracting the input pixel value according to the standard deviation of the center mask. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and comparative analysis was performed using enlarged images and PSNR.

현대 사회는 4차 산업혁명의 영향에 의해 다양한 디지털 통신 장비가 사용되고 있다. 이에 따라 데이터 전송 과정에서 발생하는 잡음제거에 관심이 높아지고 있으며, 효율적으로 영상을 복원하기 위한 연구가 진행되고 있다. 본 논문에서는 디지털 이미지 전송 과정에서 발생하는 AWGN을 제거하기 위한 필터링 알고리즘을 제안한다. 제안한 알고리즘은 영상에서 강하게 나타나는 AWGN을 제거하기 위해 블록매칭에 따라 입력화소의 주변에서 비슷한 패턴을 가진 영역을 선별하여 유사성이 높은 화소를 분류한다. 선별된 화소는 로컬 스티어링 커널로 구한 가중치를 적용하여 추정값을 정하며, 센터마스크의 표준편차에 따라 입력화소값을 가감하여 최종출력을 구한다. 제안한 알고리즘을 평가하기 위해 기존 AWGN 제거 알고리즘들과 시뮬레이션하였으며, 확대영상과 PSNR을 사용하여 비교 분석하였다.

Keywords

References

  1. P. S. V. S. Sridhar and R. Caytiles, "Efficient Cloud Data Hosting Availability," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 2, pp. 11-19, Jun. 2017. DOI: 10.21742/APJCRI.2017.06.02.
  2. R. Lai, Y. Mo, Z. Liu, and J. Guan, "Local and Nonlocal Steering Kernel Weighted Total Variation Model for Image Denoising," Symmetry 2019, vol. 11, no. 3, pp. 1-16, Mar. 2019. DOI: 10.3390/sym11030329.
  3. K. Kai, L. Tingting, X. Xianchun, Z. Guoquan, and Z. Jianxin, "Study of Infrared Image Denoising Algorithm based on Steering Kernel Regression Image Guided Filter," in 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan : China, pp. 1-3, 2019. DOI: 10.1109/ICOCN.2019.8934701.
  4. K. Ote, F. Hashimoto, A. Kakimoto, T. Isobe, T. Inubushi, R. Ota, A. Tokui, A. Saito, T. Moriya, T. Omura, E. Yoshikawa, A. Teramoto, and Y. Ouchi, "Kinetics-Induced Block Matching and 5-D Transform Domain Filtering for Dynamic PET Image Denoising," IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 4, no. 6, pp. 720-728, Nov. 2019. DOI: 10.1109/TRPMS.2020.3000221.
  5. X. Long and N. H. Kim, "An Improved Weighted Filter for AWGN Removal," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 5, pp. 1227-1232, Mar. 2013. DOI: 10.6109/jkiice.2013.17.5.1227.
  6. M. Diwakar and M. Kumar, "Edge preservation based CT image denoising using Wiener filtering and thresholding in wavelet domain," in 2016 Fourth International Conference on Parallel, Distributed and Grid Computing, Waknaghat : India, pp. 332-336, 2016. DOI: 10.1109/PDGC.2016.7913171.
  7. M. Chowdhury, J. Gao, and R. Islam, "Fuzzy Logic Based Filtering for Image De-noising," in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC : Canada, pp. 2372-2376, 2016. DOI: 10.1109/FUZZ-IEEE.2016.7737990.
  8. J. S. Lee, S. J. Ko, S. S. Kang, J. H. Kim, D. H. Kim, and C. S. Kim, "Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image," The Journal of the Korea Contents Association, vol. 13, no. 8, pp. 275-283, Aug. 2013. DOI: 10.5392/JKCA.2013.13.08.275.