Abstract
In modern society, various digital communication equipment is being used due to the influence of the 4th industrial revolution. Accordingly, interest in removing noise generated in a data transmission process is increasing, and research is being conducted to efficiently reconstruct an image. In this paper, we propose a filtering algorithm to remove the AWGN generated in the digital image transmission process. The proposed algorithm classifies pixels with high similarity by selecting regions with similar patterns around the input pixels according to block matching to remove the AWGN that appears strongly in the image. The selected pixel determines the estimated value by applying the weight obtained by the local steering kernel, and obtains the final output by adding or subtracting the input pixel value according to the standard deviation of the center mask. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and comparative analysis was performed using enlarged images and PSNR.
현대 사회는 4차 산업혁명의 영향에 의해 다양한 디지털 통신 장비가 사용되고 있다. 이에 따라 데이터 전송 과정에서 발생하는 잡음제거에 관심이 높아지고 있으며, 효율적으로 영상을 복원하기 위한 연구가 진행되고 있다. 본 논문에서는 디지털 이미지 전송 과정에서 발생하는 AWGN을 제거하기 위한 필터링 알고리즘을 제안한다. 제안한 알고리즘은 영상에서 강하게 나타나는 AWGN을 제거하기 위해 블록매칭에 따라 입력화소의 주변에서 비슷한 패턴을 가진 영역을 선별하여 유사성이 높은 화소를 분류한다. 선별된 화소는 로컬 스티어링 커널로 구한 가중치를 적용하여 추정값을 정하며, 센터마스크의 표준편차에 따라 입력화소값을 가감하여 최종출력을 구한다. 제안한 알고리즘을 평가하기 위해 기존 AWGN 제거 알고리즘들과 시뮬레이션하였으며, 확대영상과 PSNR을 사용하여 비교 분석하였다.