DOI QR코드

DOI QR Code

Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus

  • Hyun, Yongseong (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Baek, Yeongjin (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Lee, Chanyoung (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Ki, Nayeon (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Ahn, Jinsook (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Ryu, Sangryeol (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University) ;
  • Ha, Nam-Chul (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University)
  • Received : 2021.01.15
  • Accepted : 2021.02.17
  • Published : 2021.07.31

Abstract

A recent genetic study with Brucella abortus revealed the secretion activator gene A (SagA) as an autolysin component creating pores in the peptidoglycan (PGN) layer for the type IV secretion system (T4SS) and peptidoglycan hydrolase inhibitor A (PhiA) as an inhibitor of SagA. In this study, we determined the crystal structures of both SagA and PhiA. Notably, the SagA structure contained a PGN fragment in a space between the N- and C-terminal domains, showing the substrate-dependent hinge motion of the domains. The purified SagA fully hydrolyzed the meso-diaminopimelic acid (DAP)-type PGN, showing a higher activity than hen egg-white lysozyme. The PhiA protein exhibiting tetrameric assembly failed to inhibit SagA activity in our experiments. Our findings provide implications for the molecular basis of the SagA-PhiA system of B. abortus. The development of inhibitors of SagA would further contribute to controlling brucellosis by attenuating the function of T4SS, the major virulence factor of Brucella.

Keywords

Acknowledgement

This research was supported by Agriculture, Food, and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader (710012-03-1-HD120). This research was also supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3A9F6029755). We made use of beamlines 5C and 11C at the Pohang Accelerator Laboratory (Pohang, Republic of Korea). This work was also supported by the BK21 Plus Program of the Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.

References

  1. Abergel, C., Monchois, V., Byrne, D., Chenivesse, S., Lembo, F., Lazzaroni, J.C., and Claverie, J.M. (2007). Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc. Natl. Acad. Sci. U. S. A. 104, 6394-6399. https://doi.org/10.1073/pnas.0611019104
  2. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  3. Alvarez-Martinez, C.E. and Christie, P.J. (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775-808. https://doi.org/10.1128/MMBR.00023-09
  4. Archambaud, C., Salcedo, S.P., Lelouard, H., Devilard, E., de Bovis, B., Van Rooijen, N., Gorvel, J.P., and Malissen, B. (2010). Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur. J. Immunol. 40, 3458-3471. https://doi.org/10.1002/eji.201040497
  5. Callewaert, L., Aertsen, A., Deckers, D., Vanoirbeek, K.G., Vanderkelen, L., Van Herreweghe, J.M., Masschalck, B., Nakimbugwe, D., Robben, J., and Michiels, C.W. (2008). A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog. 4, e1000019. https://doi.org/10.1371/journal.ppat.1000019
  6. Del Giudice, M.G., Romani, A.M., Ugalde, J.E., and Czibener, C. (2019). PhiA, a peptidoglycan hydrolase inhibitor of Brucella involved in the virulence process. Infect. Immun. 87, e00352-19.
  7. Del Giudice, M.G., Ugalde, J.E., and Czibener, C. (2013). A lysozyme-like protein in Brucella abortus is involved in the early stages of intracellular replication. Infect. Immun. 81, 956-964. https://doi.org/10.1128/IAI.01158-12
  8. Dijkstra, A.J. and Keck, W. (1996). Peptidoglycan as a barrier to transenvelope transport. J. Bacteriol. 178, 5555-5562. https://doi.org/10.1128/jb.178.19.5555-5562.1996
  9. Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 12 Pt 1), 2126-2132. https://doi.org/10.1107/S0907444904019158
  10. Geiger, T., Lara-Tejero, M., Xiong, Y., and Galan, J.E. (2020). Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase. Elife 9, e53473. https://doi.org/10.7554/elife.53473
  11. Hankiewicz, J. and Swierczek, E. (1974). Lysozyme in human body fluids. Clin. Chim. Acta 57, 205-209. https://doi.org/10.1016/0009-8981(74)90398-2
  12. Hodak, H. and Galan, J.E. (2013). A Salmonella Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion. EMBO Rep. 14, 95-102. https://doi.org/10.1038/embor.2012.186
  13. Hueck, C.J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379-433. https://doi.org/10.1128/mmbr.62.2.379-433.1998
  14. Hyun, Y., Ahn, J., Baek, Y., Xu, Y., and Ha, N.C. (2020). Purification, crystallization, and preliminary analysis of the lysozyme-like enzyme SagA from Brucella abortus. Biodesign 8, 64-67. https://doi.org/10.34184/kssb.2020.8.3.64
  15. Kanonenberg, K., Schwarz, C.K., and Schmitt, L. (2013). Type I secretion systems-a story of appendices. Res. Microbiol. 164, 596-604. https://doi.org/10.1016/j.resmic.2013.03.011
  16. Koraimann, G. (2003). Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell. Mol. Life Sci. 60, 2371-2388. https://doi.org/10.1007/s00018-003-3056-1
  17. Korotkov, K.V., Sandkvist, M., and Hol, W.G. (2012). The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336-351. https://doi.org/10.1038/nrmicro2762
  18. Kuroki, R., Weaver, L.H., and Matthews, B.W. (1993). A covalent enzymesubstrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262, 2030-2033. https://doi.org/10.1126/science.8266098
  19. Kuroki, R., Weaver, L.H., and Matthews, B.W. (1999). Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Proc. Natl. Acad. Sci. U. S. A. 96, 8949-8954. https://doi.org/10.1073/pnas.96.16.8949
  20. Lasica, A.M., Ksiazek, M., Madej, M., and Potempa, J. (2017). The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7, 215. https://doi.org/10.3389/fcimb.2017.00215
  21. Leysen, S., Van Herreweghe, J., Callewaert, L., Heirbaut, M., Buntinx, P., Michiels, C., and Strelkov, S. (2011). Molecular basis of bacterial defense against host lysozymes: X-ray structures of periplasmic lysozyme inhibitors PliI and PliC. J. Mol. Biol. 405, 1233-1245. https://doi.org/10.1016/j.jmb.2010.12.007
  22. Matthews, B. and Remington, S. (1974). The three dimensional structure of the lysozyme from bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 71, 4178-4182. https://doi.org/10.1073/pnas.71.10.4178
  23. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/s0021889807021206
  24. Monchois, V., Abergel, C., Sturgis, J., Jeudy, S., and Claverie, J.M. (2001). Escherichia coli ykfE ORFan gene encodes a potent inhibitor of C-type lysozyme. J. Biol. Chem. 276, 18437-18441. https://doi.org/10.1074/jbc.M010297200
  25. Myeni, S., Child, R., Ng, T.W., Kupko, J.J., 3rd, Wehrly, T.D., Porcella, S.F., Knodler, L.A., and Celli, J. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9, e1003556. https://doi.org/10.1371/journal.ppat.1003556
  26. Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217. https://doi.org/10.1006/jmbi.2000.4042
  27. Otwinowski, Z. and Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  28. Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., and Tsianos, E.V. (2006). The new global map of human brucellosis. Lancet Infect. Dis. 6, 91-99. https://doi.org/10.1016/S1473-3099(06)70382-6
  29. Pei, J. and Grishin, N.V. (2005). COG3926 and COG5526: a tale of two new lysozyme-like protein families. Protein Sci. 14, 2574-2581. https://doi.org/10.1110/ps.051656805
  30. Puigbo, P., Guzman, E., Romeu, A., and Garcia-Vallve, S. (2007). OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35(Web Server issue), W126-W131. https://doi.org/10.1093/nar/gkm219
  31. Pukatzki, S., McAuley, S.B., and Miyata, S.T. (2009). The type VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol. 12, 11-17. https://doi.org/10.1016/j.mib.2008.11.010
  32. Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42(Web Server issue), W320-W324. https://doi.org/10.1093/nar/gku316
  33. Scheurwater, E., Reid, C.W., and Clarke, A.J. (2008). Lytic transglycosylases: bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 40, 586-591. https://doi.org/10.1016/j.biocel.2007.03.018
  34. Stojkovic, E.A. and Rothman-Denes, L.B. (2007). Coliphage N4 N-acetylmuramidase defines a new family of murein hydrolases. J. Mol. Biol. 366, 406-419. https://doi.org/10.1016/j.jmb.2006.11.028
  35. Terwilliger, T.C., Adams, P.D., Read, R.J., McCoy, A.J., Moriarty, N.W., Grosse-Kunstleve, R.W., Afonine, P.V., Zwart, P.H., and Hung, L.W. (2009). Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582-601. https://doi.org/10.1107/S0907444909012098
  36. Um, S.H., Kim, J.S., Kim, K., Kim, N., Cho, H.S., and Ha, N.C. (2013). Structural basis for the inhibition of human lysozyme by PliC from Brucella abortus. Biochemistry 52, 9385-9393. https://doi.org/10.1021/bi401241c
  37. Yum, S., Kim, M.J., Xu, Y., Jin, X.L., Yoo, H.Y., Park, J.W., Gong, J.H., Choe, K.M., Lee, B.L., and Ha, N.C. (2009). Structural basis for the recognition of lysozyme by MliC, a periplasmic lysozyme inhibitor in Gram-negative bacteria. Biochem. Biophys. Res. Commun. 378, 244-248. https://doi.org/10.1016/j.bbrc.2008.11.039