DOI QR코드

DOI QR Code

Occurrence of a Natural Intergeneric Hybrid between a Female Tanakia lanceolata and a Male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon Stream Flowing into the Yellow Sea in the Republic of Korea

서해안 독립 하천 대천천에서 납자루 Tanakia lanceolata (♀)와 한강납줄개 Rhodeus pseudosericeus(♂)의 자연 속간잡종 출현

  • Kim, Yong Hwi (Department of Life Science, Soonchunhyang University) ;
  • Sung, Mu Sung (Department of Life Science, Soonchunhyang University) ;
  • Yun, Bong Han (Department of Life Science, Soonchunhyang University) ;
  • Bang, In-Chul (Department of Life Science, Soonchunhyang University)
  • 김용휘 (순천향대학교 생명과학과) ;
  • 성무성 (순천향대학교 생명과학과) ;
  • 윤봉한 (순천향대학교 생명과학과) ;
  • 방인철 (순천향대학교 생명과학과)
  • Received : 2021.02.24
  • Accepted : 2021.04.01
  • Published : 2021.06.30

Abstract

A male, presumed to be an intergeneric hybrid between Tanakia lanceolata and Rhodeus pseudosericeus, was collected in the Boryeong Daecheoncheon Stream flowing into the Yellow Sea in the Republic of Korea. Morphological and molecular phylogenetic analyses were performed to discriminate the definite origin of the estimated natural hybrid. As a result of the morphological analysis, the color of the dorsal and anal fin rays edges of the natural hybrid individual, the upper and lower body colors followed the morphological characteristics of T. lanceolata, and that blue longitudinal stripe in the center of the caudal peduncle, the incomplete lateral line, and the barbels absent followed the morphological characteristics of R. pseudosericeus. In addition, as a result of the cytochrome b (cytb) gene analysis of mitochondrial DNA (mtDNA), the natural hybrid showed a nucleotide sequence similarity of 99.82 to 100% with T. lanceolata, and the maternal species was identified as T. lanceolata. As a result of the recombination activating gene 1 (rag1) gene analysis of nuclear DNA (nDNA), the natural hybrid showed double peaks pattern reflecting both the single nucleotide polymorphism sites (38 bp) between T. lanceolata and R. pseudosericeus, and the paternal species was identified as R. pseudosericeus. Therefore, a natural hybrid estimated male of Acheilognathinae analyzed in this study was found to be an intergeneric hybrid between a female T. lanceolata and a male R. pseudosericeus.

납자루 Tanakia lanceolata와 한강납줄개 Rhodeus pseudosericeus 간의 속간잡종으로 추정되는 수컷 1개체를 서해안 독립 하천인 보령 대천천에서 채집하였다. 해당 속간잡종 개체의 명확한 기원을 판별하기 위하여 형태학적 및 분자계통학적 분석을 수행하였다. 형태학적 분석 결과, 속간잡종 개체의 등지느러미 앞쪽 상단과 뒷지느러미 가장자리의 색상, 등과 배 쪽 색상 등은 납자루의 형태적 특징을 따랐으며, 미병부 중앙에 파란색 체측종대가 존재하는 점, 측선이 불완전한 점, 입수염이 없는 점 등은 한강납줄개의 형태적 특징을 따랐다. 또한, 미토콘드리아 DNA의 cytb 유전자 분석 결과, 속간잡종 개체는 납자루와 99.82~100%의 염기서열 유사도를 나타내어, 모계 종은 납자루로 판단되었다. 핵 DNA의 rag1 유전자 분석 결과, 속간잡종 개체는 납자루와 한강납줄개 간의 단일염기다형성 부위(38 bp)를 모두 반영하는 double peaks 양상을 나타내어, 부계 종은 한강납 줄개로 판단되었다. 따라서 본 연구에서 분석한 납자루아과 자연 잡종 추정 개체는 암컷 납자루와 수컷 한강납줄개 간의 속간잡종으로 판명되었다.

Keywords

Acknowledgement

이 논문은 순천향대학교의 연구비를 지원받아 수행된 연구입니다. 본 연구에서 실험 재료와 현지 채집에 도움을 주신 보령민물생태관의 조성장 관장님께 감사의 말씀을 전해드립니다.

References

  1. Avise, J.C. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos. Trans. R. Soc. Lond. B., 312: 325-342. https://doi.org/10.1098/rstb.1986.0011.
  2. Brown, W.M., M. George and A.C. Wilson. 1979. Rapid evolution of animal mitocondrial DNA. Proc. Natl. Acad. Sci., 76: 1967-1971. https://doi.org/10.1073/pnas.76.4.1967.
  3. Candolin, U. and J.D. Reynolds. 2002. Why do males tolerate sneakers? Tests with the European bitterling, Rhodeus sericeus. Behav. Ecol. Sociobiol., 51: 146-152. https://doi.org/10.1007/s00265-001-0422-6.
  4. Chae, B.S., H.B. Song and J.Y. Park. 2019. A field guide to the freshwater fishes of Korea. LG Evergreen Foundation, Seoul, Korea, 355pp.
  5. Duyvene de Wit, J.J. 1964. Hybridization experiments in acheilognathine fishes (Cyprinidae, Teleostei). Crossings between female Tanakia tanago, Rhodeus ocellatus, and Acheilognathus limbatus, and male Acheilognathus limbatus. Copeia, 1964: 156-160. https://doi.org/10.2307/1440844.
  6. Edgar, R. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. https://doi.org/10.1093/nar/gkh340.
  7. Fricke, R., W.N. Eschmeyer and R. Van der Laan. 2020. Eschmeyer's catalog of fishes: genera, species, references. Available at: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 7 Dec. 2020).
  8. Genovart, M. 2009. Natural hybridization and conservation. Biodivers. Conserv., 18: 1435-1439. https://doi.org/10.1007/s10531-008-9550-x.
  9. Hata, H., Y. Uemura, K. Ouchi and H. Matsuba. 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression. PloS One, 14: e0212452. https://doi.org/10.1371/journal.pone.0212452.
  10. Hauswirth, W.W. and D.A. Clayton. 1985. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res., 13: 8093-8104. https://doi.org/10.1093/nar/13.22.8093.
  11. Hubbs, C.L. 1955. Hybridization between fish species in nature. Syst. Zool., 4: 1-20. https://doi.org/10.2307/2411933.
  12. Hubbs, C.L and K.F. Lagler. 2004. Fishes of the Great Lakes region. Unversity of Michigan Press, Ann Arbor, U.S.A., pp. 29-40. https://doi.org/10.3998/mpub.17658.
  13. Jansson, H., I. Holmgren, K. Wedin and T. Andersson. 1991. High frequency of natural hybrids between Atlantic salmon, Salmo salar L., and brown trout, S. trutta L., in a Swedish river. J. Fish Biol., 39: 343-348. https://doi.org/10.1111/j.1095-8649.1991.tb05096.x.
  14. Kanoh, Y. 2000. Reproductive success associated with territoriality, sneaking, and grouping in male rose bitterings, Rhodeus ocellatus (Pisces: Cyprinidae). Environ. Biol. Fishes, 57: 143-154. https://doi.org/10.1023/A:1004585405848.
  15. Kawamura, K. and K. Hosoya. 2000. Masculinization mechanism of hybrids in bitterlings(Teleostei: Cyprinidae). J. Hered., 91: 464-473. https://doi.org/10.1093/jhered/91.6.464.
  16. Kim, B.S., E.J. Kang, H. Jang and I.S. Park. 2012. Morphometric traits and cytogenetic analysis in induced cross and reciprocal hybrid between Rhodeus uyekii and R. notatus. Korean J. Ichthyol., 24: 51-159.
  17. Kim, C.H., W.O. Lee, Y.J. Kang and J.M. Baek. 2010. Occurrence of a natural intergeneric hybrid, Rhodeus uyekii×Acheilognathus signifer(Pisces: Cyprinidae) from Jojongcheon Bukhan River. Korean J. Ichthyol., 22: 225-229.
  18. Kim, H.S. and J.Y. Park. 2020. Spawning characteristics of Hangang bitterling, Rhodeus pseudosericeus (Pisces: Acheilognathinae) in the host mussel with Glochidia. Korean J. Ichthyol., 32: 63-69. https://doi.org/10.35399/ISK.32.2.4.
  19. Kim, H.S., J.D. Yoon, H. Yang, H.S. Choi and J.H. Lee. 2017. Reproductive characteristics of Rhodeus pseudosericeus (Pisces: Acheilognathinae) in the Heukcheon, Namhangang (River), Korea. Korean J. Ichthyol., 29: 235-243.
  20. Kim, H.S., S.W. Yun, H.T. Kim and J.Y. Park. 2015. Occurrence of a natural hybrid between Acheilognathus signifer and A. lanceolatus(Pisces: Cyprinidae). Korean J. Ichthyol., 27: 199-204.
  21. Kim, H.S., S.W. Yun, J.G. Ko and J.Y. Park. 2014. Occurrence of a natural intergeneric hybrid between Rhodeus pseudosericeus and Acheilognathus signifer (Pisces: Cyprinidae) from the Namhangang (river), Korea. Korean J. Ichthyol., 26: 153-158.
  22. Kim, S.Y., C.B. Kim, I.S. Kim, J.Y. Park and H.Y. Park. 2002. Molecular systematics of Korean cobitids based on mitochondrial cytochrome b sequence. Korean J. Biol. Sci., 6: 45-51. https://doi.org/10.1080/12265071.2002.9647632.
  23. Kwak, Y.H., K.Y. Kim, K.S. Kim and H.Y. Song. 2020. Occurrence of a natural interspecific hybrid between Rhodeus pseudosericeus and R. notatus in Sangcheon Stream of the Han River, Korea. Korean J. Ecol. Environ., 53: 275-285. https://doi.org/10.11614/ksl.2020.53.3.275.
  24. Lanfear, R., P.B. Frandsen, A.M. Wright, T. Senfeld and B. Calcott. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 34: 772-773. https://doi.org/10.1093/molbev/msw260.
  25. Li, F., T.Y. Liao, R. Arai and L. Zhao. 2017. Sinorhodeus microlepis, a new genus and species of bitterling from China (Teleostei: Cyprinidae: Acheilognathinae). Zootaxa, 4353: 69-88. https://doi.org/10.11646/zootaxa.4353.1.4.
  26. Nelson, J.S., T.C. Grande and M.V.H. Wilson. 2016. Fishes of the world, 5th ed. John Wiley & Sons Inc., Hoboken, New Jersey, U.S.A., 707pp.
  27. Nikoljukin, M.J. 1972. Distant hybridization in acipenseridae and teleostei, theory and practice. Moskava, 335pp.
  28. Park, J.M. and K.H. Han. 2019. Early life history characteristics of an induced hybrid between Rhodeus uyekii and Rhodeus ocellatus. Korean J. Fish. Aquat. Sci., 52: 408-417. https://doi.org/10.5657/KFAS.2019.0408.
  29. Pinheiro, A.P.B., R.M.C. Melo, D.F. Teixeira, J.L.O. Birindelli, D.C. Carvalho and E. Rizzo. 2019. Integrative approach detects natural hybridization of sympatric lambaris species and emergence of infertile hybrids. Sci. Rep., 9: 4333. https://doi.org/10.1038/s41598-019-40856-4.
  30. Rambaut, A. 2018. FigTree. Version 1.4.4. Available at: http://tree.bio.ed.ac.uk/software-/figtree (accessed 17 Sep. 2019).
  31. Rambaut, A., A.J. Drummond, D. Xie, G. Baele and M.A. Suchard. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol., 67: 901. https://doi.org/10.1093/sysbio/syy032.
  32. Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M.A. Suchard and J.P. Huelsenbeck. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 61: 539-542. https://doi.org/10.1093/sysbio/sys029.
  33. Ross, M.R. and T.M. Cavender. 1981. Morphological analyses of four experimental intergeneric cyprinid hybrid crosses. Copeia., 2: 377-387. https://doi.org/10.2307/1444226.
  34. Scribner, K.T., K.S. Page and M.L. Bartron. 2000. Hybridization in freshwater species: a review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fish., 10: 293-323. https://doi.org/10.1023/A:1016642723238.
  35. Segherloo, I.H., E. Normandeau, L. Benestan, C. Rougeux, G. Cote, J.S. Moore, N. Ghaedrahmati, A. Abdoli and L. Bernatchez. 2018. Genetic and morphological support for possible sympatric origin of fish from subterranean habitats. Sci. Rep., 8: 1-13. https://doi.org/10.1038/s41598-018-20666-w.
  36. Smith, C., M. Reichard, P. Jurajda and M. Przybylski. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool., Lond., 262: 107-124. https://doi.org/10.1017/s0952836903004497.
  37. Song, S., Z.F. Pursell, W.C. Copeland, M.J. Longley, T.A. Kunkel and C.K. Mathews. 2005. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc. Natl Acad. Sci. USA., 102: 4990-4995. https://doi.org/10.1073/pnas.0500253102.
  38. Soric, V.M. 2004. A natural hybrid of Leuciscus cephalus and Alburnus alburnus(Pisces, Cyprinidae) from the Ibar River, Western Serbia. Arch. Biol. Sci., 56: 23-32. https://doi.org/10.2298/abs0402023s.
  39. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033.
  40. Stephens, M., N.J. Smith and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet., 68: 978-989. https://doi.org/10.1086/319501.
  41. Stephens, M. and P. Donnelly. 2003. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet., 73: 1162-1169. https://doi.org/10.1086/379378.
  42. Ueda, T. and Y. Ueda. 2018. Chromosomal studies of the hybrid between female Rhodeus ocellatus ocellatus and male Rhodeus atremius fangi in bitterlings(Teleostei: Cypriniformes: Acheilognathinae). Natural Resources, 9: 17-22. https://doi.org/10.4236/nr.2018.91002.
  43. Wilson, A.C., R.L. Cann, S.M. Carr, M. George and U.B. Gyllensten. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26: 375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x.
  44. Witkowski, A., J. Kotusz, K. Wawer, J. Stefaniak, M. Popiolek and J. Blachuta. 2015. A natural hybrid of Leuciscus leuciscus (L.) and Alburnus alburnus (L.) (Osteichthyes: Cyprinidae) from the Bystrzyca River (Poland). Annal. Zool., 65: 287-293. https://doi.org/10.3161/00034541anz2015.65.2.010.