DOI QR코드

DOI QR Code

Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis

실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구

  • 홍성혁 (백석대학교 스마트IT공학부 핀테크 전공)
  • Received : 2021.04.17
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.

중국 우한발 코로나 19 바이러스로 인하여 세계 경제가 침체하여, 미국연방준비제도를 비롯한 대부분 국가에서는 통화량을 늘려 경기를 부양하는 정책을 내놓았다. 주식 투자자들 대부분은 기업에 대한 재무제표 분석이 없이 유명 유튜버의 추천종목이나 지인의 말만 듣고 투자하는 경향이 있어서 주식투자의 손실 가능성이 크다. 따라서, 본 연구에서는 기존 자동매매 조건에서 발전된 인공지능 딥러닝 기법을 이용하여 주가에 영향을 미치는 거시지표를 분석하고 예측하여 주가에 미치는 상관관계를 통한 개별주가예측에 가중치를 부여하고 주가를 예측한다. 또한, 주가는 실시간 증시뉴스에 민감하게 반응하기 때문에 증시뉴스 텍스트 마이닝을 통하여 인공지능으로 예측된 주가에 가중치를 반영하여 더 정확한 주가 예측을 하여 주식 투자자에게 매매의 판단 근거를 제공하여 건전한 주식투자가 되도록 이바지하였다.

Keywords

Acknowledgement

This research was supported by 2021 Baekseok University Research Fund.

References

  1. S. H. Shin. (2013). Analysis on the Relation between Foreign Investors in Korean Stock Markets and Macroeconomic Variables. INTERNATIONAL BUSINESS REVIEW, 17(2), 89-107 https://doi.org/10.21739/IBR.2013.06.17.2.89
  2. M. F. Elhusseiny. (2017). Industries Stock Return Reactions To Risk Factors: An Empirical Investigation On The G-7 Countries. Journal of Financial and Monetary Economics, 4(1), 196-204.
  3. K. Guru-Gharan, K. M. Rahman & S. Parayitam. (2009). Influences of selected macroeconomic variables on US stock market returns and their predictability over varying time horizons. Academy of Accounting and Financial Studies Journal, 13(1), 13.
  4. Y. Qian, Y. Fan, W. Hu & F. K. Soong. (2014, May). On the training aspects of deep neural network (DNN) for parametric TTS synthesis. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (pp. 3829-3833). IEEE.
  5. J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang & A. Yuille. (2014). Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632.
  6. R. Pascanu, C. Gulcehre, K. Cho & Y. Bengio. (2013). How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026.
  7. I. Goodfellow, Y. Bengio, A. Courville & Y. Bengio. (2016). Deep learning (Vol. 1, No. 2). Cambridge : MIT press.
  8. L. R. Medsker & L. C. Jain. (2001). Recurrent neural networks. Design and Applications, 5.
  9. S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon & K. P. Soman. (2017, September). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 international conference on advances in computing, communications and informatics (icacci). (pp. 1643-1647). IEEE.
  10. D. H. Shin, K. H. Choi & C. B. Kim. (2017). Deep Learning Model for Prediction Rate Improvement of Stock Price Using RNN and LSTM. Korean Institute of Information Technology, 15(10), 9-16.
  11. T. J. Hsieh, H. F. Hsiao & W. C. Yeh. (2011). Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm. Applied Soft Computing, 11(2), 2510-2525. doi:10.1016/j.asoc.2010.09.007
  12. M. S. Mahmud & P. Meesad. (2014). Time series stock price prediction using recurrent error based neuro-fuzzy system with momentum. 2014 International Electrical Engineering Congress (iEECON). (pp. 1-4) doi:10.1109/ieecon.2014.6925866
  13. G. P. C. Fung, J. X. Yu & W. Lam. (2003, March). Stock prediction: Integrating text mining approach using real-time news. In 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings. (pp. 395-402). IEEE.
  14. S. Hong. (2020). Research on Stock price prediction system based on BLSTM. Journal of the Korea Convergence Society, 11(10), 19-24. https://doi.org/10.15207/JKCS.2020.11.10.019
  15. S. Hong. (2020). A study on stock price prediction system based on text mining method using LSTM and stock market news. Journal of Digital Convergence, 18(7), 223-228. https://doi.org/10.14400/jdc.2020.18.7.223