Acknowledgement
This study was supported by 2021 Academic Research Support Program in Gangneung-Wonju National University.
References
- T. Hastie, R. Tibshirani & J. Friedman. (2009). The Elements Of Statistical Learning: Data Mining, Inference, And Prediction. International Statistical Review, 77(3), 463-482. DOI : 10.1111/j.1751-5823.2009.00095_18.x
- S. Y. Kwon, Y. W. Ko & M. H. Hwang. (2010). The Market Reaction to Management Earnings Forecasts and its Determinants. Korean Management Review, 39(4), 995-1021.
- J. Y. Heo & J. Y. Yang. (2015). SVM based Stock Price Forecasting Using Financial Statements. KIISE Transactions on Computing Practices, 21(3), 167-172. DOI : 10.5626/KTCP.2015.21.3.167
- J. M. Park, G. H. Kim & N. C. Kang. (2015). The Market Reaction on the Corrective Disclosure of Management Earnings Forecasts. Korean International Accounting Review, 64, 183-200.
- J. B. Kim. (2012. 9. 17). Venture start-up fever, light and dark. Electronic Times News.
- H. Y. Jung. (2020. 6. 4). Bio-Pharmaceutical Companies, Individuals Still Invest. ChosunBiz.
- W. S. Jung. (2020. 4. 20). Young people in their 20s with the highest percentage of "invest in stocks"... Negative bankbook debt growth rate is also 75% "highest". The Kyunghyang Shinmun.
- S. S. Kim, D. W. Nam, H. Jo & S. H. Kim. (2012). A study on the relation of web news and stock price. Journal of Information Technology Service, 11(3), 191-203. DOI : 10.9716/KITS.2012.11.3.191.
- D. Y. Kim, J. W. Park & J. H. Choi. (2014). A comparative study between stock price prediction models using sentiment analysis and machine learning based on SNS and news articles. Journal of Information Technology Service, 13(3), 221-233. DOI : 10.9716/KITS.2014.13.3.221.
- S. Shin, H. J. Lee, & J. J. Ahn. (2018). A study on initial price change prediction of IPO shares using non-financial information. Journal of the Korean Data And Information Science Society, 29(2), 425-439.. https://doi.org/10.7465/jkdi.2018.29.2.425
- M. A. Tayal & M. M. Raghuwanshi. (2010). Review on various clustering methods for the image data. Journal of Emerging Trends in Computing and Information Sciences, 2, 34-38.
- F. Cai, N. A. Le-Khac & M. T. Kechadi. (2012). Clustering Approaches for Financial Data Analysis. in Conference: 8th International conference on Data Mining. Nevada : USA.
- I. C. Park, O. J. Kwon & T. Y. Kim. (2009). KOSPI directivity forecasting by time series model. Journal of the Korean Data And Information Science Society, 20(6), 991-998.
- S. Kim & J. A Kim. (2009). Analyzing financial time series data using the GARCH model. Journal of the Korean Data And Information Science Society, 20(3), 475-483.
- H. J. Song & S. J. Lee. (2018). A study on the optimal trading frequency pattern and forecasting timing in real time stock trading using deep learning: focused on KOSDAQ. The Journal of Information Systems, 27(3), 123-140. DOI : 10.5859/KAIS.2018.27.3.123
- D. S. Song. (2002). An empirical study on the effects of accounting information in kosdaq firms on the stock price. Asia Pacific Journal of Samall Business, 24(4), 79-98.
- A. J. O'connor. (2013). The power of popularity: An empirical study of the relationship between social media fan counts and brand company stock prices. Social Science Computer Review, 31(2), 229-235. https://doi.org/10.1177/0894439312448037
- M. J. Kim, J. H. Ryu, D. H. Cha & M. K. Sim. (2020). Stock price prediction using sentiment analysis: from "stock discussion room in naver. The Journal of Society for e-Business Studies, 25(4), 61-75. DOI : 10.7838/JSEBS.2020.25.4.061.
- J. MacQueen. (1967). Some methods for classification and analysis of multivariate observations. in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. (Vol. 1, No. 14, pp. 281-297). Oakland : USA.
- O. Oyelade, O. O. Oladipupo & I. Obagbuwa. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance. International Journal of Computer Science and Information Security, 7(1), 292-295.
- N. Nidheesh, K. A. Nazeer & P. Ameer. (2017). An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data. Computers in biology and medicine, 91, 213-221. DOI : 10.1016/j.compbiomed.2017.10.014
- R. P. D. Nath, H. J. Lee, N. K. Chowdhury & J. W. Chang. (2010). Modified K-means clustering for travel time prediction based on historical traffic data. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Springer. (pp. 511-521). DOI : 10.1007/978-3-642-15387-7_55
- R. Shinde, S. Arjun, P. Patil & J. Waghmare. (2015). An intelligent heart disease prediction system using k-means clustering and Naive Bayes algorithm. International Journal of Computer Science and Information Technologies, 6(1), 637-639.
- Y. C. Lee. (2011). Clustering-based Performance Prediction Model Using Technology Rating Data. Journal of The Korean Data Analysis Society, 13(3), 1471-1482.
- W. Chen, S. Chen, H. Zhang & T. Wu (2017). A hybrid prediction model for type 2 diabetes using K-means and decision tree. In 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE. (pp. 386-390). DOI : 10.1109/ICSESS.2017.8342938
- A. Jamal, A. Handayani, A. Septiandri, E. Ripmiatin & Y. Effendi. (2018). Dimensionality reduction using pca and k-means clustering for breast cancer prediction. Lontar Komput. J. Ilm. Teknol. Inf, 9(3), 192-201. DOI : 10.24843/LKJITI.2018.v09.i03.p08
- K. Benmouiza & A. Cheknane. (2013). Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Conversion and Management, 75, 561-569. DOI : 10.1016/j.enconman.2013.07.003
- M. H. Huh. (2000). Double k - means clustering. The Korean Journal of Applied Statistics, 13(2), 343-352.
- L. Nanetti, L. Cerliani, V. Gazzola, R. Renken & C. Keysers. (2009). Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage, 47( 4), 1666-1677. DOI : 10.1016/j.neuroimage.2009.06.014
- H. Ismkhan. (2018). I-k-means?+: An Iterative Clustering Algorithm Based on an Enhanced Version of the k-kmeans. Pattern Recognition, 79, 402.-413. DOI : 10.1016/j.patcog.2018.02.015
- R. Salman, V. Kecman, Q. Li, R. Strack & E. Test. (2011). Two-Stage Clustering with k-Means Algorithm. Communications in Computer and Information Science, 162, 110-122. DOI : 10.1007/978-3-642-21937-5_11
- N. Chayangkoon & A. Srivihok. (2016). Two Step Clustering Model for K-Means Algorithm. Proceedings of the Fifth International Conference on Network, Communication and Computing-ICNCC. DOI : 10.1145/3033288.3033347
- A. Singh, A. Yadav & A. Rana. (2013). K-means with Three different Distance Metrics. International Journal of Computer Applications, 67(10), 13-17. DOI : 10.5120/11430-6785
- E. Xing, M. Jordan, S. J. Russell & A. Ng. (2002). Distance metric learning with application to clustering with side-information. Advances in neural information processing systems, 15, 521-528. DOI:10.5120/11430-6785
- S. A. Fahad & M. M. Alam. (2016). A modified K-means algorithm for big data clustering. International Journal of Science, Engineering and Computer Technology, 6(4), 129-132.
- V. Cherkassky & Y. Ma. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 17(1), 113-126. DOI : 10.1016/S0893-6080(03)00169-2
- M. Bank, M. Larch & G. Peter. (2011). Google search volume and its influence on liquidity and returns of German stocks. Finance Markets and Portfolio Management, 25(3), 239-264. DOI : 10.1007/s11408-011-0165-y