DOI QR코드

DOI QR Code

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon (Department of Bio-information Science, Ewha Womans University) ;
  • Jung, Yeonjoo (Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University) ;
  • Jun, Yukyung (Center for Supercomputing Application, Division of National Supercomputing, Korea Institute of Science and Technology Information) ;
  • Park, Sungsu (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Sanghyuk (Department of Bio-information Science, Ewha Womans University)
  • Received : 2020.12.11
  • Accepted : 2021.01.15
  • Published : 2021.03.31

Abstract

BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Keywords

Acknowledgement

A portion of the data used for this study were obtained from the Genome-InfraNet (IDs: 10050154, 1711072542, 1711027157, and 1711038047) of the Korea Bioinformation Center.

References

  1. Sandru A, Voinea S, Panaitescu E, Blidaru A. Survival rates of patients with metastatic malignant melanoma. J Med Life 2014; 7:572-576.
  2. American Cancer Society. Cancer facts and figures. Atlanta: American Cancer Society, 2020.
  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417: 949-954. https://doi.org/10.1038/nature00766
  4. Alvarez JGB, Otterson GA. Agents to treat BRAF-mutant lung cancer. Drugs Context 2019;8:212566. https://doi.org/10.7573/dic.212566
  5. Pratilas CA, Xing F, Solit DB. Targeting oncogenic BRAF in human cancer. Curr Top Microbiol Immunol 2012;355:83-98.
  6. Fisher R, Larkin J. Vemurafenib: a new treatment for BRAF-V600 mutated advanced melanoma. Cancer Manag Res 2012;4:243-252. https://doi.org/10.2147/CMAR.S25284
  7. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011;29:3085-3096. https://doi.org/10.1200/JCO.2010.33.2312
  8. Romano E, Pradervand S, Paillusson A, Weber J, Harshman K, Muehlethaler K, et al. Identification of multiple mechanisms of resistance to vemurafenib in a patient with BRAFV600E-mutated cutaneous melanoma successfully rechallenged after progression. Clin Cancer Res 2013;19:5749-5757. https://doi.org/10.1158/1078-0432.CCR-13-0661
  9. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 2014;4:80-93. https://doi.org/10.1158/2159-8290.CD-13-0642
  10. Moriceau G, Hugo W, Hong A, Shi H, Kong X, Yu CC, et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 2015;27:240-256. https://doi.org/10.1016/j.ccell.2014.11.018
  11. Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: how melanoma cells evade targeted therapies. Biochim Biophys Acta Rev Cancer 2019;1871:313-322. https://doi.org/10.1016/j.bbcan.2019.02.002
  12. Han J, Jun Y, Kim SH, Hoang HH, Jung Y, Kim S, et al. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proc Natl Acad Sci U S A 2016;113:14283-14288. https://doi.org/10.1073/pnas.1614898113
  13. Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). GitHub, 2011.
  14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
  15. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:323. https://doi.org/10.1186/1471-2105-12-323
  16. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  18. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 2018;15:591-594. https://doi.org/10.1038/s41592-018-0051-x
  19. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013;31:213-219. https://doi.org/10.1038/nbt.2514
  20. Magi A, Tattini L, Cifola I, D'Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol 2013;14:R120. https://doi.org/10.1186/gb-2013-14-10-r120
  21. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603
  22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-140. https://doi.org/10.1093/bioinformatics/btp616
  23. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013;14:7. https://doi.org/10.1186/1471-2105-14-7
  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  25. Vergani E, Dugo M, Cossa M, Frigerio S, Di Guardo L, Gallino G, et al. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFκB-mediated inflammatory mediators. Cell Commun Signal 2020;18:156. https://doi.org/10.1186/s12964-020-00601-1
  26. Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res 2014;20:1965-1977. https://doi.org/10.1158/1078-0432.CCR-13-3122
  27. Kakavand H, Rawson RV, Pupo GM, Yang JY, Menzies AM, Carlino MS, et al. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res 2017;23:6054-6061. https://doi.org/10.1158/1078-0432.CCR-16-1688
  28. Easty DJ, Gray SG, O'Byrne KJ, O'Donnell D, Bennett DC. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res 2011;24:446-461. https://doi.org/10.1111/j.1755-148X.2011.00836.x
  29. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014;508:118-122. https://doi.org/10.1038/nature13121
  30. Goding CR, Arnheiter H. MITF: the first 25 years. Genes Dev 2019;33:983-1007. https://doi.org/10.1101/gad.324657.119
  31. Li C, Chi S, Xie J. Hedgehog signaling in skin cancers. Cell Signal 2011;23:1235-1243. https://doi.org/10.1016/j.cellsig.2011.03.002
  32. Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff A. Wild-type KRAS is a novel therapeutic target for melanoma contributing to primary and acquired resistance to BRAF inhibition. Oncogene 2018;37:897-911. https://doi.org/10.1038/onc.2017.391
  33. Sun X, Li J, Sun Y, Zhang Y, Dong L, Shen C, et al. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2016;7:53558-53570. https://doi.org/10.18632/oncotarget.10669
  34. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012;22:668-682. https://doi.org/10.1016/j.ccr.2012.10.009
  35. Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019;862:172621. https://doi.org/10.1016/j.ejphar.2019.172621
  36. Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, et al. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 2018;115:E8668-E8677. https://doi.org/10.1073/pnas.1810498115
  37. Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2015;72:1249-1260. https://doi.org/10.1007/s00018-014-1791-0
  38. Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res 2019;47:D786-D792. https://doi.org/10.1093/nar/gky930
  39. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
  40. Faiao-Flores F, Alves-Fernandes DK, Pennacchi PC, Sandri S, Vicente AL, Scapulatempo-Neto C, et al. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 2017;36: 1849-1861. https://doi.org/10.1038/onc.2016.348
  41. Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA. Metabolic rewiring in melanoma. Oncogene 2017;36:147-157. https://doi.org/10.1038/onc.2016.198
  42. Vivas-Garcia Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, et al. Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity. Molecular Cell 2020;77:120-137. https://doi.org/10.1016/j.molcel.2019.10.014