DOI QR코드

DOI QR Code

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan (Department of Bioinformatics, Odisha University of Agriculture and Technology) ;
  • Jena, Lingaraja (Centers for Advanced Research & Excellence, Department of Laboratory Oncology, All India Institute of Medical Science) ;
  • Bhuyan, Rajabrata (Department of Bio-Science and Biotechnology, Banasthali Vidyapeeth (Deemed) University) ;
  • Mahanandia, Nimai Charan (Animal Biotechnology Centre, National Dairy Research Institute) ;
  • Patri, Manorama (Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University)
  • Received : 2020.10.20
  • Accepted : 2020.11.05
  • Published : 2021.03.31

Abstract

Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

Keywords

Acknowledgement

We are thankful to all members of Neurobiology laboratory, Department of Zoology, Ravenshaw University, Cuttack, and Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar for technical support and valuable discussions.

References

  1. Jenner P, Olanow CW. Understanding cell death in Parkinson's disease. Ann Neurol 1998;44:S72-S84. https://doi.org/10.1002/ana.410440712
  2. Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid Based Complement Alternat Med 2014;2014:979730.
  3. Aruoma OI, Bahorun T, Jen LS. Neuroprotection by bioactive components in medicinal and food plant extracts. Mutat Res 2003;544:203-215. https://doi.org/10.1016/j.mrrev.2003.06.017
  4. Abdel-Salam OM. Drugs used to treat Parkinson's disease, present status and future directions. CNS Neurol Disord Drug Targets 2008;7:321-342. https://doi.org/10.2174/187152708786441867
  5. Molinoff PB, Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem 1971;40:465-500. https://doi.org/10.1146/annurev.bi.40.070171.002341
  6. Kopin IJ. Monoamine oxidase and catecholamine metabolism. J Neural Transm Suppl 1994;41:57-67.
  7. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999;51:593-628.
  8. Chen J, Song J, Yuan P, Tian Q, Ji Y, Ren-Patterson R, et al. Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. J Biol Chem 2011;286:34752-34760. https://doi.org/10.1074/jbc.M111.262790
  9. Hosak L. Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 2007;22:276-281. https://doi.org/10.1016/j.eurpsy.2007.02.002
  10. Golan DE, Tashjian AH. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. 3rd ed. Philadelphia: Wolters Kluwer Health, 2012.
  11. Ruottinen HM, Rinne UK. COMT inhibition in the treatment of Parkinson's disease. J Neurol 1998;245:P25-34. https://doi.org/10.1007/PL00007743
  12. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014;311:1670-1683. https://doi.org/10.1001/jama.2014.3654
  13. Madopar (levodopa/benserazide hydrochloride) 200mg/50mg hard capsules monograph. Electronic Medicines Compendium, 2016. Accessed 2020 Dec 1. Available from: https://medicines.org.uk/emc/product/6926/smpc.
  14. Hoffmann-La Roche Ltd. Roche Canada product monograph: Prolopa 2018. Mississauga: Hoffmann-La Roche Ltd., 2018. Accessed 2020 Dec 1. Available from: http://rochecanada.com/.
  15. Fabbri M, Rosa MM, Ferreira JJ. Clinical pharmacology review of opicapone for the treatment of Parkinson's disease. Neurodegener Dis Manag 2016;6:349-362. https://doi.org/10.2217/nmt-2016-0022
  16. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P, et al. Opicapone as an adjunct to levodopa in patients with Parkinson's disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol 2016;15:154-165. https://doi.org/10.1016/S1474-4422(15)00336-1
  17. European Medicines Agency. Ongentys public assessment report 2016. Amsterdam: European Medicines Agency, 2016. Accessed 2020 Dec 1. Available from: http://ema.europa.eu.EMA/343011/201.
  18. Kumar G, Patnaik R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: an in silico study. Med Hypotheses 2016;92:35-43. https://doi.org/10.1016/j.mehy.2016.04.034
  19. Abraham MJ, van der Spoel D, Lindahl E, Hess B et al. GROMACS user manual version 5.0.4 (2014). GROMACS, 2014. Accessed 2020 Dec 1. Available from: http://www.gromacs.org.
  20. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein M. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926. https://doi.org/10.1063/1.445869
  21. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126:014101. https://doi.org/10.1063/1.2408420
  22. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particles mesh Ewald method. J Chem Phys 1995;103:8577. https://doi.org/10.1063/1.470117
  23. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997; 18:1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  24. Rath SN, Jena L, Patri M. Understanding ligands driven mechanism of wild and mutant aryl hydrocarbon receptor in presence of phytochemicals combating Parkinson's disease: an in silico and in vivo study. J Biomol Struct Dyn 2020;38:807-826. https://doi.org/10.1080/07391102.2019.1590240
  25. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform 2011;3:33. https://doi.org/10.1186/1758-2946-3-33
  26. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  27. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243-250. https://doi.org/10.1007/978-1-4939-2269-7_19
  28. Sahoo M, Jena L, Daf S, Kumar S. Virtual screening for potential inhibitors of NS3 protein of Zika virus. Genomics Inform 2016; 14:104-111. https://doi.org/10.5808/GI.2016.14.3.104
  29. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30:2785-2791. https://doi.org/10.1002/jcc.21256
  31. Schuttelkopf AW, van Aalten DM. PRODRG: a tool for high-through-put crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004;60:1355-1363. https://doi.org/10.1107/S0907444904011679
  32. Rutherford K, Le Trong I, Stenkamp RE, Parson WW. Crystal structures of human 108V and 108M catechol O-methyltransferase. J Mol Biol 2008;380:120-130. https://doi.org/10.1016/j.jmb.2008.04.040
  33. Jagadeb M, Rath SN, Sonawane A. Computational discovery of potent drugs to improve the treatment of pyrazinamide resistant Mycobacterium tuberculosis mutants. J Cell Biochem 2018;119: 7328-7338. https://doi.org/10.1002/jcb.27033
  34. Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013;2013:891748. https://doi.org/10.1155/2013/891748
  35. Mohanty R, Das SK, Singh NR, Patri M. Withania somnifera leaf extract ameliorates benzo[a]pyrene-induced behavioral and neuromorphological alterations by improving brain antioxidant satus in zebrafish (Danio rerio). Zebrafish 2016;13:188-196. https://doi.org/10.1089/zeb.2015.1215
  36. Mohanty R, Das SK, Patri M. Modulation of benzo[a]pyrene induced anxiolytic-like behavior by retinoic acid in zebrafish: involvement of oxidative stress and antioxidant defense system. Neurotox Res 2017;31:493-504. https://doi.org/10.1007/s12640-016-9694-5
  37. Jagadeb M, Rath SN, Sonawane A. In silico discovery of potential drug molecules to improve the treatment of isoniazid-resistant Mycobacterium tuberculosis. J Biomol Struct Dyn 2019;37:3388-3398. https://doi.org/10.1080/07391102.2018.1515116
  38. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541-553. https://doi.org/10.1602/neurorx.2.4.541
  39. Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 2006;49:7559-7583. https://doi.org/10.1021/jm060642i
  40. Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 2010;15:444-450. https://doi.org/10.1016/j.drudis.2010.03.013
  41. Mancuso C, Siciliano R, Barone E, Preziosi P. Natural substances and Alzheimer's disease: from preclinical studies to evidence based medicine. Biochim Biophys Acta 2012;1822:616-624. https://doi.org/10.1016/j.bbadis.2011.09.004